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Abstract—Parallelization has become a cornerstone of modern computing, influencing everything from high-performance
supercomputers to everyday mobile devices. This paper presents a comprehensive guide on the fundamentals of parallelization that
every computer scientist should know, beginning with a historical perspective that traces the evolution from early theoretical models
such as PRAM and BSP to today’s advanced multicore and heterogeneous architectures. We explore essential theoretical frameworks,
practical paradigms, and synchronization mechanisms while discussing implementation strategies using processes, threads, and
modern models like the Actor framework. Additionally, we examine how hardware components—including CPUs, caches, memory, and
accelerators interact with software to impact performance, scalability, and load balancing. This work demystifies parallel programming

by integrating historical context, theoretical underpinnings, and practical case studies. It equips readers with the tools to design,
optimize, and troubleshoot parallel applications in an increasingly concurrent computing landscape.
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1 INTRODUCTION

Since IBM’s 1958 research memo, parallel programming has
been fundamental to computing, yet its perception has often
been skewed. Many computer scientists have historically
viewed parallelization as an advanced, specialized concept
reserved for high-performance computing (HPC) environ-
ments [1]. This could not be further from the truth. Today,
parallelization is so deeply embedded in modern computing
that nearly every system relies on it in some form. From su-
percomputers to smartphones, cloud platforms to everyday
appliances, parallel processing is everywhere [2].

Despite its ubiquity, parallel programming remains un-
derutilized by many developers, often because of the mis-
conception that it requires esoteric knowledge or is only
relevant for those working on massive-scale computations.
In reality, mastering parallelization is crucial—not just for
optimizing HPC workloads but for improving efficiency
across all computing domains, including software develop-
ment, machine learning, and embedded systems [3].

Breaking down the barriers to understanding parallel
computing is crucial to bridge this gap. This paper aims to
demystify parallel computing, providing a comprehensive
understanding of its principles and applications. We will
explore the key factors influencing parallel programs, in-
cluding parallel paradigms, hardware considerations, mem-
ory hierarchies, and cache behavior [4]. We will also ex-
amine the trade-offs involved, the problems that benefit
from parallelization, and the libraries and tools that make
it accessible to developers [5]. By the end of this paper,
readers will not only grasp the abstract concepts governing
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parallel computing but also gain the practical knowledge to
implement efficient, scalable parallel programs.

2 WHAT IS PARALLEL COMPUTING

It is crucial to explain parallel computing first to under-
stand it. In serial computing, a problem is broken into a
discrete series of instructions executed sequentially—one
after another—on a single processor. Only one instruction
may be executed at any given moment, meaning tasks are
processed strictly linearly. While this model is simple and
effective for many applications, it can become inefficient
when dealing with large-scale computational problems that
require significant processing power [6].
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Fig. 1: A schematic showing how a problem is broken down
into instructions and executed by a processor. An example
function process_data () is also shown.

Parallel computing, in contrast, is the simultaneous use
of multiple computing resources to solve a computational
problem. The problem is divided into discrete parts that
can be solved concurrently, and each part is further de-
composed into a series of instructions. These instructions
are executed simultaneously across different processors,



leveraging the computational power of multi-core CPUs,
GPUs, or distributed computing systems [7]. An overall
control/coordination mechanism maintains accuracy and
synchronization, ensuring that each task progresses as in-
tended. However, the complexity of these mechanisms
varies based on the problem being solved and the par-
allelization paradigm used—ranging from shared memory
models with synchronization primitives to distributed com-
puting models that use message passing for inter-process
communication [8].
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Fig. 2: Parallel execution of process_data () for multiple
inputs. Each input (e.g., emp1l) is processed separately in
parallel.

Based on this definition, it becomes evident why a co-
ordination mechanism is essential to ensure the program
behaves as intended. These mechanisms operate at multiple
levels of the parallel computing stack, from software-level
parallel programming models to hardware-level synchro-
nization protocols. At the lowest level, threads use locks,
mutexes, and semaphores to prevent simultaneous updates
to shared resources, which could lead to race conditions
and data inconsistencies [9]. Higher up the stack, message-
passing mechanisms—such as those implemented in MPI
(Message Passing Interface)—allow distributed processes to
communicate effectively and synchronize their execution

[10].

Why parallelize a program? The primary motivation
is to enhance speed and efficiency. Modern computers
typically feature multi-core processors, GPUs, and high-
performance distributed systems, making it logical to share
computational loads across multiple processing units rather
than allowing resources to remain idle. By distributing
workloads efficiently, programs can significantly reduce ex-
ecution times, achieve higher throughput, and better use
available hardware resources [11].

3 HISTORICAL PERSPECTIVE

In order to give an overview of parallelization, it is impor-
tant to understand its roots. Parallelization can be traced
back to the early days of computing in the 1950s when
researchers first recognized the need to process multiple
tasks concurrently, which brought forward the IBM research
memo, as discussed earlier. The early pioneers began explor-
ing methods to execute several operations simultaneously,
which set the stage for modern parallel computing [12].
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As computer architectures advanced in the 1960s and
1970s, so did the ideas surrounding parallel computation.
Researchers developed early models such as the Parallel
Random Access Machine (PRAM), which provided a simpli-
fied abstraction for understanding how multiple processors
could work together on a single problem. However, PRAM
had its limitations as it did not consider the complexi-
ties surrounding parallel computing. During this era, large
mainframe systems and specialized supercomputers were
built with parallel processing capabilities, albeit within very
controlled environments, paving the way for more ambi-
tious applications in scientific and engineering domains

[13].

The 1980s witnessed significant progress in hardware
design and algorithm development, leading to the advent of
dedicated parallel machines. This period saw the emergence
of vector processors and early multiprocessor systems that
could handle more complex, data-intensive tasks. Academic
research and government-funded projects contributed to a
deeper understanding of synchronization, load balancing,
and the challenges of distributed memory, which are still
crucial to parallel computing today [14].

With the advent of microprocessors in the 1990s, paral-
lelization transitioned from specialized supercomputers to
more widely available commodity hardware. The introduc-
tion of multi-core processors revolutionized the comput-
ing landscape, making parallel processing accessible to a
broader audience. This shift was accompanied by the devel-
opment of robust programming models and standards, such
as MPI and OpenMP, which allowed developers to exploit
parallelism more easily in everyday applications [15].

Today, parallelization is a fundamental aspect of nearly
every computing system, from high-performance clusters
to smartphones. The historical evolution from theoretical
models and expensive hardware to ubiquitous, multi-core
devices underscores the transformative impact of paral-
lel computing. Modern computer scientists benefit from
decades of research and practical advancements that have
made parallel programming a specialized skill and an es-
sential component of practical software development across
diverse fields [16].

4 THEORIES GOVERNING PARALLEL COMPUTING
4.1 The PRAM Model

One of the earliest and most influential theoretical frame-
works in parallel computing is the Paralle] Random Access
Machine (PRAM) model, which was mentioned in the his-
torical perspective section. PRAM provides an idealized ab-
straction of parallel computation, where multiple processors
operate synchronously and share a standard memory. The
simplicity of PRAM in capturing parallelism has made it a
widely used model for designing parallel algorithms [17].
However, this abstraction also introduces challenges, as full
synchronization and shared memory access are costly in
practical implementations [18].

o Exclusive Read Exclusive Write (EREW): No simul-
taneous reading or writing of the same memory cell.



e Concurrent Read Exclusive Write (CREW): Multiple
processors can read the same cell, but only one may
write.

e Concurrent Read Concurrent Write (CRCW): Both
reading and writing can be performed concurrently,
with various rules to resolve write conflicts.

While PRAM is primarily a theoretical construct, it has
motivated the development of specialized hardware and
emulation techniques. Some researchers have attempted to
map PRAM models onto modern many-core processors,
such as Intel’s Single-chip Cloud Computer (SCC), to bridge
the gap between theory and real-world implementations
[19]. However, practical constraints, such as memory band-
width limitations and synchronization overheads, limit di-
rect PRAM implementations [20].

Despite its limitations, PRAM remains relevant in algo-
rithm design and analysis, often as a stepping stone for
developing practical parallel algorithms [21].

4.2 Bulk Synchronous Parallel (BSP) Model

Developed by Leslie Valiant, the BSP model introduces a
more realistic abstraction that segments computation into a
series of supersteps. Each superstep consists of three phases:

1) Local Computation: Processors perform computa-
tions using local data.

2) Communication: Data is exchanged between pro-
Cessors.

3) Barrier Synchronization: Processors wait until all
have completed the current superstep before pro-
ceeding.

BSP explicitly captures the cost of communication and
synchronization, making it a valuable tool for predicting
and optimizing performance in real-world parallel systems

[22].

4.3 The LogP Model

To further refine our understanding of parallel execution,
the LogP model introduces four key parameters that account
for realistic communication and computation costs:

o L (Latency): The delay incurred in communicating a
message from one processor to another.

e o0 (Overhead): The time a processor spends sending
or receiving a message.

e g (Gap): The minimum time interval between con-
secutive message transmissions.

e P (Processors): The number of processors in the
system.

LogP provides a practical framework for analyzing par-
allel execution costs, particularly in distributed-memory ar-
chitectures. It addresses PRAM’s shortcomings by consider-
ing real-world constraints such as network communication
overhead and memory access latency [23].
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4.4 Scalability and Speedup: Amdahl’'s Law and
Gustafson’s Law

4.4.1 a. Amdahl's Law

Amdahl’s Law is a foundational principle that quantifies
the potential speedup of a parallel program. It states that

if a fraction f of a task is inherently serial, the maximum
speedup S achievable with P processors is limited by:

B 1
=—
f+T

This Law underscores a critical limitation: even if most
of the computation can be parallelized, the serial portion
restricts overall performance. As P approaches infinity, the
speedup converges to % [17].

S(P)

This is critical for understanding and analyzing parallel
programs and how parallelization can impact their potential
performance.

4.4.2 b. Gustafson’s Law

Gustafson’s Law offers a more optimistic view by arguing
that as we increase the problem size, the parallelizable
portion of the workload grows, potentially mitigating the
impact of the serial fraction. Instead of focusing on fixed
problem sizes, Gustafson’s perspective considers that we of-
ten tackle more significant problems, with more processors
and the overall efficiency can improve [18].

4.5 Complexity Classes and Parallel Algorithms

Understanding which problems can be efficiently paral-
lelized involves concepts from computational complexity
theory.

4.5.1 a. The NC Class

The class NC (Nick’s Class) includes decision problems
that can be solved in polylogarithmic time using a polyno-
mial number of processors. These problems are considered
"efficiently parallelizable," making them ideal candidates
for parallel computation. Examples include parallel sorting
algorithms, matrix multiplication, and prefix sum computa-
tions [21].

4.5.2 b. P-Complete Problems

In contrast, P-complete problems are believed to be inher-
ently sequential. While they can be solved in polynomial
time, no known efficient parallel algorithm exists. It is
widely conjectured that P-complete problems do not belong
to NC, placing a fundamental limit on parallelizability [20].

5 PARALLEL COMPUTING PARADIGMS
5.1 Processes

In computer science fundamentals, a process is a unit of exe-
cution - an “active’ entity, distinct from a program, which is a
"passive’ entity. When a program (like a .exe or binary file) is
run multiple times, each instance creates a new process. This
concept enables parallelization, where a program can divide
a problem across multiple processes. For example, consider
a 100x100 2D matrix containing 10,000 elements (100 x 100).
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Fig. 3: Processes in an Operating System. Each process runs
in its own isolated memory space and maintains separate
resources.

If split across 10 processes for parallel computation, each
process would handle 1,000 elements [24].

There are multiple ways to distribute elements across
processes, such as block-cyclic, block, and cyclic distri-
bution. In block distribution, contiguous chunks of data
are assigned to each process. Cyclic distribution alternates
elements among processes in a round-robin fashion. Block
cyclic combines these approaches by cyclically distributing
blocks of elements, balancing communication overhead, and
load [25]. This hybrid approach benefits algorithms requir-
ing local data access and regular communication patterns,
such as matrix operations in parallel computing. Each of
these distribution strategies typically affects the scalability
and efficiency of the program. It is essential to understand
the problem’s core and pick the appropriate strategy based
on that. It is crucial to benchmark the program with different
distribution strategies when in doubt, as thorough testing is
key to ensuring the best performance.

It is not only matrices that can be distributed across
processes; matrices were the example given due to their
prevalent use in high-performance computing. Processes are
isolated, which means each unit of execution runs within its
environment with no direct awareness of other processes.
The only way to communicate between processes is through
message passing, which ensures they can work together
to solve problems. Multiple libraries implement message
passing, but the most popular and standardized implemen-
tation is the Message Passing Interface (MPI). MPI provides
a comprehensive set of protocols and routines that enable ef-
ficient data exchange and synchronization between parallel
processes, allowing robust parallel functionality [26].

5.2 Threads
5.3 Threads in Parallel Computing

A thread refers to a single sequential flow of execution
within a process. Threads are typically not as isolated as pro-
cesses since they exist within the same memory space and
share resources like heap memory, file handles, and global
variables. They are more lightweight than processes because
creating and switching between threads requires less over-
head, but there are limits to the number of threads that
can be efficiently run on a system. These limitations stem
from various factors, including available system resources
(memory and CPU cores), operating system constraints, and
the overhead of context switching between threads [27], [28].

Threads can be used to solve various parallel computing
problems. One example is the adaptive quadrature problem,
which can be solved using a First In, First Out (FIFO)
approach where threads cooperatively process work items
from a shared queue until the desired accuracy threshold is
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Fig. 4: Threads in an Operating System. Threads share the
process’s memory (code, data, heap) while each maintains
its own stack for execution context.

reached; each thread can also have its own queue. However,
this is not the only threading-based solution - the same prob-
lem can also be solved using higher-level abstractions like
tasks, which provide a more structured approach to parallel
execution. Modern threading frameworks and libraries have
evolved to provide increasingly sophisticated abstractions
and primitives, making implementing parallel algorithms
efficiently while handling synchronization, load balancing,
and thread safety concerns easier [29], [30].

Several libraries allow threading to occur within the
operating system, and a popular standard is the OpenMP
standard, which provides coordination and synchronization
mechanisms for threads to solve problems accurately while
working in unison. There are mechanisms such as locks that
prevent race conditions by providing exclusive access to a
resource to one thread at a time and other directives that
help manage parallel execution, including barriers for syn-
chronization points, critical sections for protecting shared
resources, atomic operations for thread-safe updates, and
scheduling clauses that control how work is distributed
among threads. These features, combined with OpenMP’s
pragma-based approach, make it easier for developers to
parallelize their code while maintaining correctness and
achieving better performance [31], [32].

6 FACTORS IMPACTING PARALLELIZATION

Multiple factors influence the performance, efficiency, and
potential for parallelizing parallel programs. This section
provides an overview of these critical components and
examines their extent of impact. The most crucial factor
we must first consider is the nature of the problem it-
self—specifically, whether it can be parallelized and how
well it can be parallelized [33].

6.1 Nature of the Problem

The characteristics of the problem fundamentally determine
whether parallelization will be effective and what approach
should be taken. Some problems are inherently sequential



and resist parallelization, while others naturally divide into
independent tasks that can be executed concurrently [34].
Understanding these problem characteristics is essential be-
fore attempting to implement any parallel solution, as they
directly influence the potential speedup and scalability that
can be achieved through parallelization [35].

The first step in parallelization is to find concurrency
in the problem. Some problems are embarrassingly par-
allel, while others cannot be parallelized even with the
most robust and innovative methods [36]. An example of
an embarrassingly parallel program is 3D video rendering
handled by a graphics processing unit, where each frame
(forward method) or pixel (ray tracing method) can be
handled with no interdependency, allowing the workload
to be distributed across multiple processors with minimal
overhead [37].

If a problem has a chain of dependencies—meaning that
you must compute step ¢ before step i+ 1—then there is little
opportunity to run parts of the problem simultaneously
[38]. For example, many recursive or iterative processes
where the output of one iteration is needed for the next
are challenging to parallelize, as the sequential nature of
the algorithm forces a strict order of operations that limits
concurrency [39].

We have discussed the NC (Nick’s Class), which consists
of problems that can be solved in polylogarithmic time
using a polynomial number of processors [40]. P-complete
problems are believed to be inherently sequential because
finding an efficient parallel (NC) algorithm for any P-
complete problem would imply that P equals NC, a result
that most experts doubt [41]. A classic example of a P-
complete problem is the Circuit Value Problem (CVP), a
benchmark for problems resistant to parallel approaches

[40].

There are many problems where concurrency can be
found to parallelize the program; problems that do not have
a sequential interdependency have massive potential for
parallelization [42]. Data structures such as arrays, graphs,
queues, stacks, and hash tables often support a wide range
of parallel patterns, which will be discussed later in this
paper [43]. This inherent ability to divide work among
independent subtasks is what makes them attractive targets
for parallel processing.

For instance, when processing large datasets, opera-
tions can often be performed on different data segments
simultaneously without affecting the final result [44]. Sim-
ilarly, many simulation problems can be divided spatially,
with different regions being computed independently be-
fore combining results [33]. This division into independent
tasks allows for efficient utilization of computing resources,
provided that the data can be partitioned in a balanced and
effective manner [34].

The challenge lies in identifying these independent com-
ponents and determining the optimal granularity of paral-
lelization, as too fine-grained parallelism can lead to exces-
sive overhead [38]. At the same time, parallelism that is too
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coarse-grained might not fully utilize available computing
resources. Understanding the nature of these parallelizable
problems is essential before applying specific parallel pro-
gramming patterns and techniques [35]. Illustrating how
different data structures can be parallelized.

6.2 Problem Size

Another significant factor influencing the efficiency of par-
allelization is the size of the problem. For example, if a
task operates on a single element and cannot be subdivided
into smaller, independent sub-tasks, then parallel processing
might offer little to no benefit. In such cases, the workload
is too fine-grained to distribute effectively across multiple
processing units [45]. This issue arises because the overhead
of managing parallel execution, including synchronization
and inter-process communication, outweighs any potential
speedup [46].

Conversely, many problems are inherently large-scale,
presenting their challenges regarding parallelization. When
a dataset or computational task is huge, simply dividing
it into chunks might not be enough. Two major issues can
arise:

1) Memory Constraints: After partitioning the data,
each chunk must fit into the available memory. If the
dataset is so vast that the divided portions exceed
the memory capacity, the system may resort to disk
swapping or other slower memory management
techniques [47]. This negates the speed benefits of
parallelization and can lead to significant perfor-
mance bottlenecks. Efficient execution of large-scale
parallel tasks under memory constraints requires
intelligent memory management techniques, such
as active memory scheduling and hierarchical mem-
ory models, to maximize utilization while reducing
latency [48].

2) Cache Efficiency: Modern processors rely heavily
on cache memory to speed up data access. Main-
taining cache coherence becomes critical when a
problem is divided among multiple processors or
threads [49]. For huge problems, frequent cache
invalidations and the overhead of synchronizing
caches across cores can severely degrade perfor-
mance [45]. Research indicates that cache coherence
protocols and optimal cache sizing significantly im-
pact the performance of parallel algorithms, and
choosing the proper configuration can lead to sub-
stantial improvements in computational efficiency
[50]. Additionally, optimizing cache-aware algo-
rithms, such as locality-preserving data structures,
can help reduce cache misses and improve speed

[51].

In summary, while parallelization can dramatically ac-
celerate computational tasks, its effectiveness depends on
the problem size [45]. Tasks that are too small may not be
divisible into enough sub-tasks to justify the overhead of
parallel processing. On the other hand, huge problems may
run into memory limitations and cache inefficiencies, both of
which can limit the performance gains [49]. Understanding



and addressing these challenges is crucial when designing
systems and algorithms for practical parallel computation.

To evaluate how the size of a problem impacts paral-
lelization, we conducted two scaling experiments on the
Cirrus supercomputer at the University of Edinburgh for
a cellular automaton problem that implements Conway’s
Game of Life parallelized using Message Passing Interface.
The first experiment examined weak scaling by maintaining
a fixed number of 5 processors while varying the land-
scape size from 500x500 to 5000x5000. The second experi-
ment tested strong scaling by fixing the landscape size at
5000x5000 while varying the number of processors from 2
to 16. Each configuration was run 10 times to ensure reliable
measurements [52]. The implementation used a decomposi-
tion strategy where the grid was divided among processes,
with each process responsible for updating its local portion
while managing necessary boundary communications with
neighboring processes [53].
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Fig. 5: Scaling Results of a Cellular Automaton parallelised
using Message Passing Interface

Our experiments on the Cirrus supercomputer were
designed to assess how varying landscape sizes affect the
parallelization of a C-based MPI implementation of Con-
way’s Game of Life. The simulation divides the global grid
among processors, with each processor handling a subgrid
that includes ghost boundaries for halo exchanges [52].
As the overall landscape size increases—from 500x500 to
5000x5000 cells—the computational load per process grows
significantly, since the total number of cells (and thus the
number of updates) increases quadratically with the grid
dimensions [34].

While larger landscapes naturally increase the volume of
computations, they also affect the communication overhead
inherent in MPI applications [53]. Each process communi-
cates with its neighbours to update ghost cells, and the
cost of these communications depends on the perimeter
of the subgrid [49]. In larger grids, the relative ratio of
the communication boundary (perimeter) to the computa-
tional workload (area) tends to decrease, potentially offering
better efficiency per process [45]. However, the absolute
amount of data exchanged still grows, which can lead to
longer overall runtimes despite the improved computation-
to-communication ratio [44].

Itis clear that increasing the landscape size intensifies the
parallel workload, which typically influences the efficiency
of parallel programs; this is evident, leading to a marked rise
in computational effort reflected in the observed execution
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times [52]. Although larger local subgrids can mitigate the
relative impact of communication overhead, growth in the
number of cells ultimately results in increased runtimes [34].
This analysis underscores the need to balance computational
workload and communication efficiency when scaling par-
allel MPI applications for larger problem sizes [53]. The
pseudocode of the program is available in the Appendix.

6.3 Parallel Patterns

The parallelization pattern typically affects the parallel pro-
gram’s scalability, speedup, load balancing, and overhead.
It is important to state that there are constructs of parallel
patterns and parallel patterns themselves. There are many
parallel patterns, some popular ones including geometric
decomposition, actor pattern, pipeline pattern and recur-
sive data pattern. Selecting the appropriate pattern dictates
how efficiently a program scales with additional processors
and influences the overall execution speed by managing
overhead and balancing loads across computing units [54].
For instance, geometric decomposition divides a problem’s
domain into smaller regions that can be solved concurrently,
often improving scalability and speedup [55]. At the same
time, the actor pattern emphasizes independent entities
communicating via messages to maintain balanced work
distribution [56]. Similarly, the pipeline pattern organizes
tasks into a sequence of processing stages that can operate
in parallel, and the recursive data pattern leverages divide-
and-conquer strategies to handle complex tasks by breaking
them into simpler subproblems [57]. Each pattern relies on
underlying constructs provided by modern programming
languages and frameworks, reinforcing that low-level tools
and high-level design patterns are essential for developing
efficient and robust parallel programs.

Effective load balancing is another critical factor influ-
enced by the chosen pattern. Techniques such as the Actor
model encapsulate state and behavior into independent
units communicating through message passing. This results
in a more dynamic distribution of tasks across processors
and reduces the risk of some cores idling while others
are overburdened [56]. However, every pattern brings its
overheads; for instance, the pipeline pattern, which orga-
nizes computation into sequential stages, may suffer from
inefficiencies if one stage processes data slower than the
others, causing subsequent stages to wait [58].

It is also essential to distinguish between the constructs
of parallel patterns and the patterns themselves. Constructs
refer to the fundamental building blocks provided by pro-
gramming languages or libraries—such as threads, tasks, fu-
tures, or message-passing mechanisms—that enable parallel
execution [59]. In contrast, parallel patterns are higher-level,
reusable solutions that encapsulate best practices and design
strategies for common parallel programming challenges. By
leveraging these patterns, developers can create efficient
parallel programs without reinventing the wheel for each
new problem [54].



6.4 Programming Language & Libraries

Each programming language is suitable for specific applica-
tions. Programming languages are typically classified into
high-level and low-level programming languages [43]. The
choice of language significantly impacts the performance
of the parallel program; low-level languages are usually
preferred for parallel programs as they are closer to the
hardware with limited abstractions [44]. That does not mean
that high-level languages cannot write parallel programs,
but if speed and efficiency are paramount, it is more appro-
priate to write a parallel program in a low-level language,
just as if you want an efficient serial program, it is crucial
to write the program in a language closer to hardware, the
same principles apply to parallel programs [36].

Libraries used for parallel programming also play a cru-
cial role in an application’s performance [38]. Some libraries
are meticulously optimized to extract every bit of efficiency
from each line of code—employing techniques like low-
level synchronization, vectorization, and loop unrolling—to
maximize speed on specific hardware [49]. In contrast, while
generally efficient, other libraries may not be as finely tuned.
Moreover, even a well-optimized library can exhibit varying
performance across standard implementations due to dif-
ferences in system architectures, compiler optimizations, or
algorithmic choices [34]. Therefore, selecting the appropriate
library involves balancing factors such as raw performance,
compatibility with target hardware, and overall ease of
integration with the existing codebase [47].

We implemented Conway’s Game of Life as a parallel
cellular automaton using MPI in Python and C to compare
different programming languages’ performance and paral-
lelization capabilities. We ran these implementations on the
Cirrus supercomputer at the University of Edinburgh to
analyze how each language affects program performance.
The program was parallelized using 4 processes.
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Fig. 6: Timing Results of a Cellular Automaton parallelized
using Message Passing Interface

Based on the figure, it is evident that C is far more
efficient than Python in writing MPI programs. Our experi-
ments were conducted on two landscape sizes, namely 1152

7

and 2304, and the results clearly indicate that the efficiency
gap between the two languages grows as the problem size
increases.

One fundamental reason for this disparity is the intrinsic
difference in how the two languages are executed. C is a
compiled language, which means that its code is translated
directly into machine language before execution. This allows
for low-level optimizations, efficient memory management,
and direct access to hardware resources. Such features
are crucial in high-performance computing environments,
where every millisecond counts [60]. In contrast, Python
is an interpreted language that introduces an additional
layer of abstraction. This results in runtime overhead due
to dynamic type checking, garbage collection, and the in-
terpretation process itself. As the problem size scales up,
these overheads become increasingly significant, thereby
exacerbating the performance gap [61].

Furthermore, when it comes to MPI programming,
the efficiency of communication between processes is
paramount. C-based MPI implementations are typically op-
timized to leverage the full capabilities of the underly-
ing hardware, including low-latency networks and high-
throughput interconnects. Python, although supported by
libraries such as mpi4py, adds an extra layer of abstraction
over the native MPI calls. This extra layer can introduce
latency and additional computational cost, which in turn
diminishes its performance, especially in larger-scale prob-
lems where communication costs dominate [62].

Additionally, as the landscape size doubles, the amount
of data to be processed and communicated increases sig-
nificantly. This not only increases the computational load
but also magnifies any inefficiencies in the programming
model. In C, the low-level control and static typing allow
the program to scale more gracefully under increased load.
Python, on the other hand, may suffer from scaling issues
due to its inherent overhead, making it less suitable for very
large problem sizes in MPI contexts [63].

The combination of compile-time optimizations, effi-
cient memory management, and direct hardware interfacing
gives C a substantial advantage over Python for parallel
programming. These advantages become even more pro-
nounced as the problem size increases, leading to a widen-
ing efficiency gap between the two languages [64].

6.5 Hardware

This section discusses the impact that hardware has on
parallel computing. Hardware is broad and overarching, so
this section is divided into different components, includ-
ing the cache, memory, CPU, accelerator, architecture, and
interconnects. Each of these elements plays a critical role
in ensuring efficient parallel computation. The cache min-
imizes data access latency by storing frequently used data
close to the processor, thereby improving execution speed
[65]. The memory subsystem provides the bandwidth and
capacity to manage large volumes of data efficiently, which
is crucial for high-performance computing (HPC) applica-
tions [66]. The CPU is the central orchestrator, coordinating



multiple threads and processes to maximize computational
throughput [67].

Accelerators, such as GPUs and FPGAs, enhance perfor-
mance by offloading specialized tasks and enabling massive
parallelism. Adopting accelerators in HPC systems has be-
come increasingly common due to their ability to execute
data-parallel workloads efficiently [68]. In the subsequent
sections, we delve deeper into these components, exploring
their architectures, interactions, and how they collectively
contribute to the performance and scalability of parallel
computing systems.

6.5.1 CPU

The CPU (Central Processing Unit) is the primary comput-
ing engine responsible for executing instructions and man-
aging data flow. Modern CPUs often feature multiple cores,
enabling the simultaneous execution of multiple threads
and enhancing computational efficiency [69]. Advanced
techniques like pipelining, branch prediction, and out-of-
order execution further optimize instruction throughput by
minimizing stalls and ensuring efficient resource utilization

[70].

In homogeneous architectures, where all CPU cores are
identical, parallel workloads benefit from predictable per-
formance scaling and simplified task scheduling. Uniform
core performance ensures efficient load balancing, making
such designs ideal for applications like scientific simula-
tions, financial modeling, and numerical computing, where
tasks can be evenly distributed across cores [71]. However,
homogeneous CPUs struggle with diverse workloads, lack-
ing the architectural flexibility to optimize specialized tasks
such as deep learning inference or high-speed cryptographic
processing.

Conversely, heterogeneous CPU architectures combine
general-purpose cores with specialized cores or accelerators.
This hybrid approach is increasingly popular in modern
computing systems, mobile processors, and Al-driven ar-
chitectures, where high-performance cores manage control
flow while energy-efficient cores or domain-specific units
handle specialized tasks [68].

For efficient parallel computing, CPU architectures must
support high-speed inter-core communication, low-latency
memory access, and dynamic task scheduling. In multi-core
CPUs, cache coherence mechanisms (e.g., the MESI protocol)
ensure consistency across cores but can introduce perfor-
mance overhead due to increased synchronization traffic.
Optimizations like NUMA-aware memory placement and
thread affinity help reduce cache contention and improve
locality, directly enhancing parallel performance [66].

6.5.2 Cache

Caches are small, high-speed memory units situated close
to the CPU cores. They store frequently accessed data and
instructions to reduce latency and improve performance.
Typically, modern processors employ a multilevel cache
hierarchy (L1, L2, and sometimes L3), each balancing speed
and capacity [66].
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In parallel computing, efficient cache utilization is criti-
cal as multiple cores require fast access to shared data. Poor
cache management can lead to contention and increased
memory access latencies, reducing system efficiency [65].

A key challenge in multi-core and many-core systems is
cache coherence, which ensures that all processor cores see
a consistent view of memory. Cache coherence protocols,
such as MESI (Modified, Exclusive, Shared, Invalid), are
crucial in synchronizing shared data across multiple caches.
However, maintaining coherence introduces performance
overhead, as frequent invalidations and updates can in-
crease memory traffic, affecting parallel efficiency [69]. To
mitigate this, modern architectures incorporate non-uniform
cache architectures (NUCA) and directory-based coherence
mechanisms to balance latency and bandwidth.

6.5.3 Memory

Memory, commonly implemented as DRAM, is the primary
workspace for data and instructions during program execu-
tion. The performance of the memory subsystem—in terms
of capacity, bandwidth, and latency—directly influences the
efficiency of parallel applications. For instance, distributed
memory architectures require efficient data communication
strategies to optimize performance [72].

In heterogeneous systems, managing distinct memory
spaces for different types of processing units introduces
complexities in data coherence and efficient access. Con-
sequently, optimizing memory access patterns is key to
improving performance [73]. Coordination and synchro-
nization are crucial for optimal performance, as the limited
uniformity of the architecture might cause unpredictability
in the performance of parallel programs.

One of the major bottlenecks in parallel computing is
memory bandwidth limitations. As the number of process-
ing cores increases, the demand for memory access grows,
potentially leading to memory contention and bottlenecks
in shared-memory architectures. High-bandwidth memory
(HBM) and DDRS5 are designed to mitigate these issues by
offering increased bandwidth and reduced latency [68].

6.5.4 Accelerator

Accelerators have become prevalent in parallel computing
due to their ability to handle specialized tasks that de-
mand high computational throughput and parallel data pro-
cessing. Unlike traditional CPUs, which prioritize general-
purpose computing and sequential task execution, acceler-
ators exploit task and data parallelism by leveraging ar-
chitectures optimized for specific workloads. For instance,
GPUs (Graphics Processing Units) utilize a Single Instruc-
tion Multiple Thread (SIMT) execution model, making them
particularly effective for matrix operations, convolutional
computations in deep learning, and large-scale simulations
in computational physics and molecular dynamics [68].

Similarly, FPGAs (Field-Programmable Gate Arrays) of-
fer customizable hardware acceleration, allowing direct
circuit-level optimization of specific tasks. Unlike fixed-
function GPUs, FPGAs provide fine-grained parallelism



and low-latency execution, making them suitable for real-
time data processing, signal processing, and cryptographic
applications [73].

On the other hand, ASICs (Application-Specific Inte-
grated Circuits) provide the highest efficiency level for
targeted applications, such as Al inference, blockchain com-
putations, and high-frequency trading. By being hardwired
for specific functions, ASICs eliminate overhead associated
with general-purpose processing, leading to unmatched
power efficiency and computational density [74].

While accelerators significantly enhance parallel com-
puting capabilities, their integration into heterogeneous ar-
chitectures introduces multiple challenges. Efficient mem-
ory management becomes critical, as different processing
units operate on separate memory spaces. Unified Mem-
ory Architecture (UMA), zero-copy memory transfers, and
direct memory access (DMA) aim to bridge these gaps,
ensuring minimal data transfer overhead [66].

6.5.5 Architecture

The architecture of a computing system defines the over-
all design and organization of its hardware components,
including the CPU, cache, memory, accelerators, and in-
terconnects. The choice of architecture directly influences
parallel computing performance by determining computa-
tional efficiency, scalability, energy consumption, and ease
of programming. A key distinction in modern architectures
is between homogeneous and heterogeneous designs, which
have unique implications for parallel computing perfor-
mance [71].

Homogeneous architectures provide predictable perfor-
mance scaling and efficient task scheduling, while heteroge-
neous architectures combine different processing units, such
as general-purpose CPUs with specialized GPUs, FPGAs, or
TPUs, to leverage their strengths [68].

6.5.6 Interconnects

Interconnects are the communication backbone linking vari-
ous hardware components within a computing system, such
as CPUs, memory, and accelerators. Their performance is
crucial in parallel computing, as they directly impact data
transfer speed, latency, and overall system efficiency [70].

One of the primary challenges in parallel computing
is minimizing communication overhead while maximiz-
ing data locality and concurrency. High-speed, low-latency
interconnects—such as PCle, NVLink, and Intel’s Com-
pute Express Link (CXL)—are designed to facilitate high-
throughput data transfer between CPUs, GPUs, and accel-
erators [69].

7 TOOLING AND ECOSYSTEM

Numerous tools aid parallel programming, and the num-
ber has been growing since its inception. These tools are
enveloped within a rich ecosystem that helps write, de-
bug, and optimize concurrent applications [2], [75]. In this
section, we explore the various components of this ecosys-
tem, from foundational programming frameworks to perfor-
mance analysis tools, simulation platforms, and community
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resources that together empower developers to build robust
parallel systems.

7.1 Programming Frameworks and Libraries

A wide array of programming frameworks and libraries
forms the spine of parallel development. Widely adopted
frameworks such as MPI (Message Passing Interface) and
OpenMP provide standardized approaches to parallelism
on distributed-memory and shared-memory systems, which
have been discussed earlier. There are specialized libraries
like CUDA and OpenCL, which haven’t been mentioned,
that target the massive parallelism offered by GPUs, en-
abling developers to harness the power of heterogeneous
architectures for compute-intensive tasks fully [52], [76].

These frameworks offer the fundamental constructs for
process synchronization, task distribution, and communi-
cation and integrate with modern programming languages
like C++, Python, and Rust to provide a high degree of
abstraction. These abstractions enable developers to focus
on algorithmic design rather than low-level details while
achieving efficient execution across multi-core and many-
core environments.

7.2 Performance Analysis and Debugging Tools

Identifying bottlenecks and ensuring the correctness of par-
allel applications requires a robust suite of profiling and
debugging tools. Tools such as Intel VTune and NVIDIA
Nsight offer deep insights into applications’” runtime behav-
ior, including CPU and GPU utilization, memory bandwidth
usage, and communication overheads [77], [78]. These tools
are essential for fine-tuning performance, as they help pin-
point areas where parallel efficiency may be improved.

In parallel environments, debugging challenges such
as race conditions, deadlocks, and synchronization issues
become more pronounced, including root cause analysis;
when parallelizing a serial program, it moves the number
of instances your program is running from singular to
multiple, which makes it more complicated in trying to
identify where the issue is when a bug arises. Special-
ized debugging tools like TotalView and Allinea DDT are
designed to handle the complexity of multi-threaded and
multi-process applications. They allow developers to step
through concurrent executions, inspect thread states, and
monitor inter-process communication, ensuring that parallel
programs run efficiently and correctly [79].

7.3 Simulation and Visualization Platforms

Simulation and visualization tools play a crucial role in the
design and analysis of parallel systems. These platforms
allow developers to model and predict the behavior of com-
plex systems under various workloads, providing a sandbox
environment for testing theoretical models like PRAM, BSP,
and LogP [23], [80]. This helps them understand the dynam-
ics of their parallel programs before even writing code. By
simulating parallel architectures and workloads, these tools
provide a robust environment for analyzing the scalability
and synchronization overhead before deployment on actual
hardware.



Visualization also plays a critical role; graphing tools
allow the process to assist in interpreting performance data,
which can be critical in benchmarking and understanding
implementation dynamics to make better decisions about
parallel programs, and it also makes it easier to understand
complex interactions within parallel systems. Graphical rep-
resentations of thread activity, memory usage, and intercon-
nect traffic can highlight inefficiencies that will not be visible
simply by compiling the program and executing the code.
Visualization has become very critical and valuable to the
parallel computing ecosystem because of the insights that
lead to more efficient and resilient parallel systems [81].

7.4 Community, Documentation, and Learning Re-
sources

The active communities surrounding parallel programming
frameworks and tools greatly enhance the tooling ecosys-
tem. Open-source projects, online forums, and collaborative
platforms such as GitHub provide an environment where
developers can share code, report issues, and contribute
to improvements [82]. This collaborative spirit accelerates
innovation and ensures that best practices are disseminated
widely across the community [83].

In addition to community support, comprehensive doc-
umentation, tutorials, and training courses are critical for
empowering developers to use these tools effectively. Many
frameworks offer extensive official documentation [84],
while academic institutions and industry leaders provide
webinars, workshops, and online courses to help new and
experienced developers [85]. The continuous evolution of
these resources ensures that computer scientists remain up-
to-date with the latest advancements and techniques in
parallel programming, fostering an environment of lifelong
learning and innovation [86].

7.5 Integration and Deployment Tools

Integration with modern build systems and deployment
tools is essential to bringing parallel applications from de-
velopment to production. Tools such as CMake, Make, and
various IDE plugins facilitate the compilation and linking of
parallel codebases across different platforms [87]. Further-
more, containerization technologies like Docker and orches-
tration tools like Kubernetes are increasingly used to deploy
parallel applications in scalable, cloud-based environments,
ensuring consistent performance and manageability [55].

Deployment tools also play a critical role in monitor-
ing and maintaining the health of parallel applications
once they are in production. Real-time monitoring systems,
log aggregators, and automated testing frameworks help
ensure that performance remains optimal and that any
issues are promptly identified and addressed [89]. This
holistic approach to tooling—from development to deploy-
ment—ensures that parallel applications are robust, scal-
able, and ready to meet the demands of modern computing
workloads [49].
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8 CASE STUDY OF A ROAD TRAFFIC SIMULATION

Using a road traffic simulation as a case study, we identify
both suitable and unsuitable parallel programming pat-
terns for implementation. We then analyze how different
hardware configurations and programming languages af-
fect these patterns’ performance. Additionally, we present
methods to evaluate the effectiveness of the program imple-
mented with the selected pattern. The detailed specifications
of the road traffic simulation are provided in the appendix.

8.1 Chosen Design Patterns
8.1.1 Geometric Decomposition

8.1.1.1 Overview of Geometric Decomposition: Ge-
ometric or domain decomposition is a parallel computing
strategy that partitions a spatial domain into smaller, man-
ageable subdomains [55]. It could be suited for the simula-
tion model but not without drawbacks; it is typically used
in domain problems that require localized handling and
communication between neighbors, often in conjunction
with the Message Passing Interface [90]. The road traffic sim-
ulation represents roads and junctions as a graph structure,
where vehicles move from one node to another, engaging
with local features such as traffic lights and possibly navi-
gating events such as crashes and collisions. By leveraging
geometric decomposition, the simulation can be partitioned
based on the geographical layout of the road network,
allowing for efficient parallel processing and management
of localized interactions. Still, the partitioning is not as
straightforward, and the simulation dynamics complicate
utilizing the strategy [91].

It is essential to state that the data structure we are dealing
with for this simulation is a graph. This makes it challenging
to decompose its subdomains across multiple processing
elements without problems in synchronization and efficient
partitioning. Unlike linear data structures such as arrays or
linked lists, which can be easily divided into chunks and
distributed based on the amount of UEs available, graph
structures involve complex interconnections that complicate
decomposition [92]. At the same time, tools like MPI Graph
Topology can assist in decomposing a graph for parallel
computation; there are bottlenecks in using this approach
specifically for this simulation model [93].

However, dividing the number of elements by the number
of processes and distributing the remainder across pro-
cessing elements is not straightforward for a graph data
structure. A graph operates on vertices and edges, not on
a simple linear sequence of elements, making it difficult to
partition evenly [94]. Although the unidirectional graph-like
model for the road simulation can simplify decomposition
somewhat, the underlying complexities of vertex and edge
distribution remain significant. Graphs consist of vertices
connected by edges, and these connections often span across
different partitions when the graph is divided. This results
in communication and synchronization overhead as vertices
in one partition may frequently interact with vertices in
another. Minimizing such inter-partition edges is crucial for
reducing communication costs and enhancing performance,
but achieving this balance is inherently challenging due to
the graph’s topology [95].



Despite these challenges, it is possible to decompose a
graph and distribute it across processing elements. Graph
partitioning has become a well-established technique in
parallel computing, with various strategies developed to
address its complexities [96]. Methods such as adjacency
lists are commonly used to enable efficient graph pro-
cessing, particularly for sparse graphs like road networks.
Additionally, graph partitioning libraries provide multiple
techniques for dividing graphs among processing elements
(PEs). One of the most widely used tools for this purpose is
the sequential partitioner METIS [97]. Parallel partitioners
like ParMETIS, PT-Scotch, and JOSTLE are also designed
explicitly for distributed-memory architectures in parallel
programs. However, these implementations have specific
challenges, which we will explore in detail [98].

8.1.1.2 Advantages in Applying Geometric Decom-
position for this Road Traffic Simulation Model: As dis-
cussed earlier, the road network’s graph can be naturally di-
vided into subgraphs or regions, each containing a subset of
junctions and connecting roads. Since vehicles interact pri-
marily with their immediate environments, such as the road
they are on or the intersection they are approaching—most
of the computational workload is localized within these
subdomains and can be effectively managed [99]. Tools like
neighborhood collective operations can be used to manage
communications in the topology if implemented effectively
using Message Passing Interface. For instance, calculating a
vehicle’s position, speed adjustments due to road conges-
tion, and decisions at junctions are all confined to specific
areas of the network; this is possible, but the simulation dy-
namics could typically complicate this. However, we have
to discuss this as the localized processing of sub-domains
is one of the highlights of domain decomposition due to
its ability to be very efficient as new processes are added.
Geometric decomposition could capitalize on this locality by
assigning each subdomain to a different processor, enabling
concurrent communication and updates without significant
interference [100].

Geometric decomposition can enhance computational
efficiency and scalability in huge problem sizes but depends
on the distribution’s granularity [101]. Parallel processing
of subdomains means that the simulation can handle more
vehicles and more extensive road networks without a linear
increase in computation time; this would allow the program
to scale proportionally to the number of available PEs, but
there would also be limitations as processes grow, due to
the serial portion of the code that becomes a bottleneck in
parallelization. Each processor could focus on its localized
setting, handling interactions in that instance. This division
of labor reduces the computational overhead. It allows for
more frequent updates and finer-grained simulation details
within each subdomain. Still, it is essential to note that
allowing this is not as straightforward as discussed due to
dynamism and the concurrent activities within the simula-
tion, making it difficult for each execution unit to manage
its domain effectively while also being part of the global
environment.

Moreover, geometric decomposition facilitates effective
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management of the simulation’s data structures and mem-
ory usage. By keeping data localized to specific subdomains,
the simulation minimizes the need for global data synchro-
nization and reduces memory contention among processors
[102]. This localization is particularly beneficial for record-
ing and reporting simulation statistics when needed as it
would allow calculations and derivations of nuances within
the simulation, which might be challenging to capture in
other parallel pattern environments such as the Actor model
due to the granularity as it would require that each actor
sends a message as an update and that can impact perfor-
mance due to message passing overload. Each processor can
independently maintain and update these statistics for its
subdomain in the Geometric pattern, contributing to a com-
prehensive final report without excessive inter-processor
communication.

8.1.1.3 Challenges in Applying Geometric Decom-
position for this Road Traffic Simulation Model: However,
applying geometric decomposition requires careful consid-
eration of inter-subdomain interactions and load balanc-
ing [103]. Vehicles moving between subdomains introduce
the need for communication between processors to ensure
seamless transitions and consistent simulation states. There
must be established to handle these boundary conditions
without introducing significant latency; vehicles transfer-
ring locations between processed would have to be commu-
nicated, and as the number of cars increases and as the simu-
lation scales with additional complexity, this can eventually
become a challenge and a bottleneck in the simulation.
The road network may have varying complexity and traffic
density regions, leading to unequal computational loads
across processors. Dynamic load balancing would required,
which is not only complex to implement but also complex
to manage [104].

Another significant challenge lies in the limitations of
graph partitioning libraries. The graph partitioning libraries
are typically optimized for large-scale graphs with millions
of vertices and edges [105]. The specifications for the road
network provided would not typically be optimized for
graph partitioning libraries like METIS, which usually add
overhead. Graph partitioning libraries use sophisticated al-
gorithms to segment the graph into efficient, adequate pro-
portions. The time taken to partition a graph increases with
the size and complexity of the graph. For massive graphs,
graph partitioning libraries are optimized to handle them
efficiently. Still, for smaller graphs, the relative partitioning
time might be significant compared to the overall simulation
runtime, which would be evident in the road traffic simu-
lation, eventually making the program inefficient [106]. If
partitioning your graph takes hours and your simulation
runs for minutes, it is not the most efficient scenario; a
better approach would be a better ratio in proportion to the
simulation time.

Furthermore, graph partitioning libraries, such as METIS’s
algorithms, have specific time complexities [107]. The mul-
tilevel approach typically operates in near-linear time rel-
ative to the number of edges, but the constants involved
can be non-trivial. Additional memory is required to store



intermediate graph representations during the coarsening
and partitioning phases. This includes data structures for
the coarsened graphs, mappings between levels, and other
auxiliary information [108].

While for massive graphs, this memory overhead is manage-
able and often justifiable by the performance gains in par-
titioning, the relative memory consumption might be less
efficient for smaller graphs, potentially limiting resources
for other simulation components [109].

It's important to note that the simulation dynamics do
not favor the linear pattern of geometric decomposition. For
example, the problem’s specifications stated that vehicles
followed recalculated routes; if this weren’t the case, this
design strategy would have been more viable as we could
apply data parallelism to represent each road as a queue and
distribute partitions across processes. The overhead would
be more tolerable, but a critical component for this road
traffic model is when vehicles arrive at a junction, their des-
tination can be re-routed, which would make readjusting the
queue impractical and further exacerbate the unsuitability
of this approach for the road traffic simulation [110].

Crashes at junctions without traffic lights introduce an-
other layer of complexity in a partitioned environment.
Since crashes are localized events involving vehicles from
different partitions, detecting and managing these incidents
requires robust mechanisms to prevent race conditions
[111]. What happens when two cars crash in two distinct
processes simultaneously? How do you account for it in the
simulation? It would typically require managing a synchro-
nization procedure, which would likely harm performance
due to its need to be aware at every point in the simula-
tion. UEs must collaborate to update the state of junctions
involved in crashes, ensuring that the removal of vehicles
from the simulation is handled accurately and consistently
across all relevant partitions [112]. This necessity for coor-
dinated event handling can increase the computational and
communication overhead, challenging the overall efficiency
of the simulation.

Fuel consumption and vehicle removal processes also
experience significant impacts from graph partitioning. Each
UE is responsible for tracking the fuel levels of vehicles
within its partition, necessitating communication with other
UEs when vehicles run out of fuel or are removed due to
crashes. Efficiently managing these dynamic state transi-
tions across partitions with the appropriate data structures
and memory buffers would require careful programming
[113]. The inter-PE communication necessary for these op-
erations can introduce additional latency, particularly when
vehicle states frequently change or interact across multiple
partitions [114].

It is also possible that domain decomposition could alter
vertex ordering within the graph. Since graph partitioning
libraries usually focus on optimizing load balancing and
reducing communication overhead, they rearrange the ver-
tices to achieve these goals [107]. In the context of road
traffic simulation, where junctions represent critical points
for vehicle movements and traffic light operations, this

12

Legend:

® Junction

Partition 1 Partition 2 Partition 3
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reordering can complicate the management of vehicle routes
and traffic flow. Vehicles moving between partitions require
seamless communication between UEs to accurately update
their locations and statuses [115]. This necessity introduces
latency and demands robust synchronization mechanisms
to ensure vehicle movements and traffic light states remain
consistent across all partitions.

The geometric decomposition pattern complicates the
dynamic addition of vehicles, primarily due to challenges
like identifying the appropriate unit of execution (UE) for
placing new vehicles, tracking newly added cars, and man-
aging the communication overhead involved in dynamically
handling the addition and removal of vehicles [34]. As a
result, this strategy is not well-suited for supporting this
specific dynamic aspect of the simulation.

These points all emphasize one theme within the simula-
tion that geometric decomposition cannot possibly handle:
synchronization to manage the simulation’s dynamism and
nonlinearity [111]. In the next section, we will discuss the
synchronization required.

8.1.1.4 Synchronization and Memory Considera-
tions: The synchronization mechanisms needed for this
parallel design strategy in the road traffic simulation are
complex and robust, making their development, testing, and
debugging time-consuming [112], [113]. A significant bot-
tleneck is ensuring that each partition remains independent
while the overall model operates seamlessly.

Memory requirements are generally lower per process-
ing element in distributed memory architectures than in
shared memory architectures [114]. However, overall mem-
ory usage remains a consideration because the data struc-
tures used to store graph representations still consume
significant memory resources. The most considerable bot-
tleneck associated with this design pattern is latency, arising
from the communication overhead between distributed pro-
cessing elements. Multiple messages are being sent between
PEs simultaneously to ensure synchronization, which can
lead to a build-up in the queues, further exacerbating la-
tency and affecting the overall time of the simulation [116].

Due to the reordering of vertices, messaging patterns
across processing elements (PEs) can become unpredictable.
This unpredictability hampers traceability, root cause analy-
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sis, and debugging processes, limiting the ability to success-
fully and efficiently derive an optimal and correct simula-
tion within an adequate amount of time [111]. When vertices
are distributed in a non-sequential manner, tracking the flow
of messages and identifying where and why specific issues
occur becomes challenging. This lack of clarity complicates
the debugging process, making it difficult to pinpoint errors
or inefficiencies within the simulation, eventually leading to
significantly larger development time.

Beyond the challenges in messaging and debugging,
vertex disordering adversely affects data locality and cache
performance [115]. In a well-ordered graph, related vertices
are often stored closely in memory, facilitating faster data
access and improved cache utilization. However, when ver-
tices are reordered and dispersed across different partitions,
the simulation may experience increased cache misses and
slower data retrieval times. This degradation in cache per-
formance can significantly reduce the overall efficiency of
the simulation, as more time is spent accessing scattered
data rather than processing it; this can also be very time-
consuming as trying to find the next edge in the graph
non-linearly might not be very efficient. Additionally, the
complexity of data access patterns increases, making it
harder to optimize memory usage and further impacting
the simulation’s performance [75].

8.1.1.5 Impact on Hardware: Multi-core or many-
core parallelism is typically integrated into general-purpose
CPUs. In contrast, Graphical Processing Units (GPUs) offer
a high degree of parallelism through numerous simple
cores. However, effectively using GPUs requires structuring
compute problems to fit GPU hardware’s regular, parallel
nature [117]. Additionally, the simulation in question would
involve irregular operations that are “sparse”—entailing nu-
merous random memory accesses due to the nonlinearity of
the simulation—which can negatively impact data locality
and cache performance [118].

While shared-memory systems are adequate for the scale
of this simulation, multi-node systems are more suitable
for handling the I/O required at the simulation’s end.
Multi-node systems, especially those with NUMA (Non-
Uniform Memory Access) architecture, benefit from data
decomposition, which allows more efficient data placement
across memory banks [72]. If the simulation is properly load-
balanced and inter-unit communication is minimized, these
systems can better use the available memory bandwidth.

8.1.1.6 Impact on Programming Language: For im-
plementing this program, I recommend using a low-level
language such as C, C++, or Fortran, with a particular
preference for C. C offers fine-grained control over memory
management and is well-supported by libraries for geomet-
ric decomposition, making it ideal for this task [119]. While
high-level languages like Python are an option, they are
less practical for efficiency due to the overhead involved
with recursive calls and garbage collection. Python acts as
an abstraction over C, meaning that using it introduces
extra overhead, lacks compilation advantages, and makes
it more challenging to optimize the program, ultimately
exacerbating execution speed and inefficiency [143].
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8.1.1.7 Summary and Transition to Alternative
Strategies: In summary, geometric decomposition is a well-
tested and foundational design pattern in parallel comput-
ing; it allows flexibility and imposes no limitation on how
granular the problem can be decomposed, nor on how many
PEs the load can be distributed across [34]. While it is ideal
for linear data structures like arrays, linked lists, and struc-
tures that follow a sequential order, it could also be suitable
for a graph data structure. However, the specifications and
dynamics of this problem limit its potential. Consequently,
this leads us to explore another parallel design strategy that
would be ideal for this problem—the Actor Model—which
will be discussed in the next section [120].

8.1.2 Actor Model

8.1.2.1 Overview of the Actor Model: Given the
unpredictability and nonlinearity of computations in road
traffic simulations, we propose using the actor model rather
than employing a decomposition strategy to solve the prob-
lem. This approach is a mathematical theory that defines
"Actors’ as the fundamental building blocks of concurrent
computation [131]. True to its name, the model involves
independent entities (actors) that leverage the nonlinearity
of the simulation. While it doesn’t follow the traditional
parallel computing design patterns, the Actor model has
gained popularity for its ability to handle high levels of
concurrency. In this framework, an actor is a computational
entity that responds to messages it receives [131].

8.1.2.2 Rationale for Choosing the Actor Model:

This model introduces flexibility and dynamism that wasn’t
achievable with geometric decomposition. The unpre-
dictability of partition placements across execution units
(UEs) is no longer an issue. The Actor model allows actors
to be mapped to PEs in the programmer’s chosen order.
Still, significant considerations should be factored in when
mapping to optimize for efficiency. However, it’s important
to note that the graph structure becomes irrelevant and
redundant within this framework. All components within
the simulation can act independently as actors. This includes
the roads, junctions, and vehicles; these actors would be
concurrent entities communicating through asynchronous
message-passing, which imposes no limitation on the scala-
bility of this program and allows the company to run even
heavier simulations due to the amount of concurrency that
can be extracted from modeling the simulation using the
Actor model [121].

8.1.2.3 Advantages of the Actor Model: The actor
model has significant advantages in terms of concurrency
and scalability. This parallelism is crucial for large-scale sim-
ulations involving thousands of junctions and vehicles. The
model inherently supports high concurrency, allowing nu-
merous actors to execute simultaneously without interfering
with each other’s states, thus improving overall simulation
performance and scalability [122].

Another key benefit is the simplified synchronization
and state management. In the Actor model, each actor
maintains its state and interacts with others solely through
message passing. This isolation minimizes the risks of race
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conditions and deadlocks. For instance, when a vehicle
interacts with a junction, it sends a message requesting
permission to proceed, eliminating the need for complex
locking mechanisms. This leads to cleaner, more maintain-
able code and reduces the complexity of managing shared
resources [121].

8.1.2.4 Drawbacks of the Actor Model: However,
there are notable drawbacks to using the Actor model
for this simulation. One primary concern is the overhead
associated with message passing. The simulation involves
frequent interactions between many actors, such as vehicles
requesting access to junctions or updating their routes. This
high volume of messages can introduce significant latency
and processing overhead, potentially slowing down the sim-
ulation, especially when dealing with real-time constraints
like traffic light synchronization and vehicle movements

[123].

The Actor model can also lead to resource contention
and bottlenecks, particularly at heavily trafficked junctions.
Junction actors may become overwhelmed with incoming
messages from numerous vehicles, limiting their ability to
process requests efficiently. This can hinder scalability and
degrade performance, as the throughput of these critical
actors directly impacts the overall simulation. Furthermore,
managing many actors can result in high memory con-
sumption, posing challenges for simulations that require
hundreds of thousands of actors to model extensive road
networks [124].

The Actor pattern can also make traceability difficult,
as we might struggle to understand the overall nature of
the program. Debugging tools might help, but a measure of
concurrency within the program would make it challenging
to perform root cause analysis [125].

The actor pattern is the preferred pattern over the design
strategies due to its ability to handle dynamism; the actor
pattern should also be the preferred pattern for a variety of
simulation problems; geometric decomposition is a clever
and concise parallel design but should be more suited
for computations which are predetermined beforehand, al-
though we discussed the limitations of graph partitioning,
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this is not the most crucial problem of using this strategy the
main issues that arise is synchronization and how to write
code that cannot be solved in a linear sequence [126].

8.1.2.5 Impact on Hardware: The Actor model
profoundly impacts the selection of hardware platforms
due to its inherently concurrent and decentralized nature.
Hardware that excels in parallel processing and efficient
inter-process communication is essential for optimal per-
formance. Multi-core and many-core processors and dis-
tributed computing systems are well-suited because they
can assign actors to separate processing units, enabling pre-
cise concurrent execution [124]. Additionally, efficient and
high-performance networks would be needed, especially as
the scale grows; for a large simulation, writing the program
on a consumer-grade system would be very inefficient due
to the limited number of cores and also the synchronization
of those, as throughput can be a significant determinant of
the performance of actor-based systems.

Implementing the Actor model requires a message-
passing library, which makes hardware choice a critical
factor. Distributed computing architectures like supercom-
puters are ideal for achieving maximum scalability. While
there is no definitive processor for implementing this
model—since most modern multi-core processors meet the
basic requirements—careful consideration should be given
to selecting the most suitable compiler and compiler flags
for the architecture to maximize efficiency and also maxi-
mize the utility of resources [127].

8.1.2.6 Implementation Considerations: As all ac-
tors act independently, we can identify them by their ID; we
can map an actor to a process or share the actors across pro-
cesses and have a hashing procedure to help us understand
which process to direct a message to. A hashing procedure
maps an actor’s unique ID to a specific shard or process
by applying a hash function, ensuring that all messages
intended for a particular actor are consistently directed to
the same process. This method enables efficient and scalable
message routing, as the hash function distributes actors
evenly across available shards, preventing load imbalances
and reducing the likelihood of bottlenecks [128].

By utilizing a hashing-based approach for actor-to-
process mapping, the simulation can achieve high perfor-
mance and scalability, effectively managing communication
and resource allocation even as the number of actors in-
creases substantially. This strategy optimizes computational
resources, ensuring the system remains responsive and re-
silient under varying loads, which is crucial for accurately
modeling complex and large-scale road traffic scenarios

[129].

In the geometric decomposition section, we discussed
libraries that assist with graph partitioning for parallel pro-
gramming. Some libraries help implement the actor model,
but they have limitations. Libactor is one of them, catering
to C programming and using threads for concurrency. How-
ever, it is not designed for distributed memory architectures.
If we were to apply the Actor Model to the road simulation,
we would need to use message-passing libraries [121].



The most suitable library in this context would be MPI
(Message Passing Interface). While MPI is not ideal for
the Actor Model, as actors are supposed to create other
actors dynamically for this simulation, which is challenging
in MPI due to its fixed number of processes, it is still
feasible. Additionally, while the Actor Model relies heavily
on asynchronous, fire-and-forget messaging, and MPI does
support non-blocking communication, it is not as intuitive
or straightforward as in dedicated actor systems.

For the development of this program, C++ is recom-
mended due to its support for object-oriented programming
through classes, which effectively abstract the definitions of
the Actor Model and provide a high-level representation
of properties. This abstraction facilitates more accessible
and efficient program development. In contrast, C relies on
structs, which offer greater granular precision in defining
components. Nevertheless, C++ affords sufficient granu-
lar control over the program while maintaining a higher
level of abstraction than C. The advantages of C++’s ab-
straction mechanisms render the increased abstraction non-
problematic, except in scenarios where maximum speed and
efficiency are critical [130]. Still, the rationale for the C++
recommendation is that we would need a base of abstraction
in which we can build foundational classes rather than
structs that interact more cohesively, as building these foun-
dations with C structs would require significant nuance and
take a lot of development time as we would have to create
our ideologies from scratch. It would require more effort to
build these programs; however, Rust may also be considered
if expertise in the language is available, as it is a newer lan-
guage with complex features that require careful program-
ming. Other languages like Python and Go are impractical
for programs that handle extensive simulations. Although it
is possible to write simulations in these languages, the high
levels of abstraction and the need for precise control would
exacerbate efficiency deficiencies. Later, in this paper, we
would discuss why high-level programming languages are
not suitable for writing this road traffic simulation using a
cellular automaton program as the subject of the experiment

[151].
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Fig. 9: Mapping of Road Traffic Simulation Using the Actor
Model
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8.1.2.7 Conclusion: It is important to note that the
actor model is a powerful and precise model of computa-
tion, which makes it very important for the programmer to
know what they are doing, as it is easy to produce subpar
or incorrect code due to the complexity of implementing
the Actor Model, which can make debugging and testing
very time-consuming [126]. Still, due to the problem’s spec-
ifications, the Actor Model would be the most appropriate
parallel strategy. The simulation is very dynamic, and nu-
merous operations are happening at once. The future actions
of the program are not predictable; it is not like a parallel
heat equation solver or a cellular automaton problem, which
would require writing the domain code and handling syn-
chronization between processes; this problem is not as linear
as those problems and would require significant complexity
in synchronization. The reason why the Actor model is
appropriate for this problem is that each actor manages itself
independently and only acts on the messages it receives;
we can program a message struct with numerous enums
for each actor and decide the course of action based on the
message enum and the variables within the struct [132].

The Actor Model presents a robust and scalable par-
allel design strategy suitable for dynamic and complex
simulations like road traffic modeling. Its ability to handle
high concurrency, simplify synchronization, and maintain
scalability makes it an ideal choice despite drawbacks such
as message passing overhead and potential resource con-
tention [133]..

8.2 Inappropriate Design Patterns
8.2.1 Pipeline

8.2.1.1 Overview of the Pipeline Design Pattern:
Pipelining is a technique that enhances processing perfor-
mance by dividing tasks into sequential stages, allowing
multiple operations to overlap and execute concurrently.
This procedure is used in various fields to improve ef-
ficiency and is prominently evident in computer science,
particularly in parallel computing.

Thread 1

> Pipeline Controller

Stage 3| €Buffe&3

s

Fig. 10: Pipeline Design Pattern in Parallel Computing Using
Multiple Threads

8.2.1.2 Unsuitability of Pipeline for Road Traffic
Simulation: A useful heuristic for determining whether the
pipeline design strategy is appropriate is to assess if the
overall computation involves performing calculations on
multiple datasets that flow through a sequence of stages.
This approach leverages concurrency in linear processes,
similar to parallel computing [134].



Applying this heuristic reveals that the current problem
is not well-suited for the pipeline pattern. Although the
issue is somewhat linear due to unidirectional graphs, di-
viding the computation into stages is impractical due to the
dynamic nature of the simulation. While each junction could
be represented as a pipeline stage, the computations at each
intersection vary and depend on unpredictable sequences
of events. The pipeline strategy is effective when there is a
predetermined sequential order of operations at each step,
which is not the case here [135]. Consequently, it is unlikely
to be an appropriate strategy for this or similar simulation
problems. We discussed in the earlier sections that geometric
decomposition is not suitable for not being able to predeter-
mine computations effectively as simulations typically deal
with randomness; we cannot account for randomness in the
pipeline strategy as it is meant to follow a determined route

[136].
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Fig. 11: Illustration of Complex Dependencies in the Road Simulation
Model That Cannot Be Modeled Using a Pipeline

As shown in Figure 11, the road traffic simulation’s
complex dependencies demonstrate why a pipeline strategy
would not be ideal for this problem.

Even if we somehow managed to implement the pipeline
strategy, a significant question arises: how to map the
pipeline stages effectively. Suppose we utilize OpenMP
tasks and tasking features, even though pipelining isn’t
inherently supported. In that case, we could attempt to
use OpenMP to manage the pipeline stages [137]. However,
this raises the question: Should we treat each junction as a
pipeline stage by assigning a separate thread to each stage?
For a medium-sized simulation with 20,000 junctions, this
approach would require 20,000 threads, which is imprac-
tical. The same issue arises when using processes, as the
mapping would render this design strategy unsuitable for
the problem [138].

Synchronization between stages in the pipeline could
eventually become a bottleneck. Another point is that
pipelining is typically ideal for programs when broken into
stages; each stage is equally computationally expensive or
has an equal computational load. If one stage in the pipeline
generally varies widely from the median, the slowest stage
would become a bottleneck. In the case of the road traffic
simulation, we are not aware beforehand of the computation
distribution of the problem, hindering the ability to load
balance effectively [139].
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8.2.2 Recursive Data

8.22.1 Overview of the Recursive Data Design Pat-
tern: The recursive data design strategy is a programming
approach where data structures are defined in terms of
themselves. This self-referential definition allows for the
creation of complex, hierarchical data models like linked
lists, trees, and nested objects. Using recursion, developers
can simplify handling data that naturally fits into nested or
hierarchical patterns, making code more intuitive and easier
to manage for specific problems [140].

Fig. 12: Example of Recursive Data on an Extended Binary Tree

A Recursive Data pattern operates on a sequential data
structure. As Figure 12 highlights, it would be appropriate
for programs requiring sequential processing. It can also
be used for graph processing, but the main reason it isn’t
suitable for the current simulation problem is the aspect of
the simulation dynamics.

8.2.2.2 Unsuitability of Recursive Data for Road
Traffic Simulation: Understanding that the recursive data
problem involves a distributed recursive function is essen-
tial. Problems that can be solved recursively on a single
processing element (PE) could, in theory, be adapted to a
distributed recursive data pattern. However, when consid-
ering the specific problem it cannot be solved recursively.
Additionally, writing a recursive program to solve a simu-
lation problem is currently not feasible.

Implementing the recursive strategy in a serial context
could involve a depth-first search algorithm on a tree, where
the program reaches its base case and then pops off elements
from a stack to combine the results.

In a parallel context, it could imply a parallel depth-
first or breadth-first search in a graph where parallelism
occurs at each node and its neighbors, allowing multiple
edges to be processed simultaneously. This strategy would
be excellent for standardized graph problems with deter-
ministic computations at each node, as it will enable the time
complexity to be broken down from an O(N) algorithm to
an O(log N) algorithm. However, this is not the case for
the current problem because, similar to why the pipeline
strategy is unsuitable, we cannot predict what computations
will be done at each stage. We do not know the calculations
that would be done at each edge of the graph, as different
simulation parameters can lead to computations that cannot
be accounted for beforehand [141]-[143].



Another rationale is why recursive data is not a suitable
approach. The simulation represents a network of roads and
junctions modeled as a graph, where roads are unidirec-
tional edges and junctions are nodes. Vehicles move through
this network, and their interactions depend on dynamic
factors like traffic lights, congestion, and fuel levels. The
road network’s simulation dynamics do not naturally lend
themselves to recursive data modeling because it involves
complex, non-hierarchical relationships and cycles [144]-

[146].

Using recursive data structures to model the road net-
work could lead to complications such as circular references,
which are challenging to manage and cause issues like
infinite loops or stack overflows [147], [148]. Additionally,
the simulation requires efficient algorithms for route plan-
ning, congestion management, and vehicle movement, all of
which benefit from iterative processing and data structures
optimized for graph traversal, such as adjacency lists or
matrices [149], [150].

Moreover, the simulation involves real-time updates to
the state of vehicles, roads, and junctions. Vehicles need
to recalculate routes based on current road speeds and
traffic light statuses, and the system must handle events like
crashes and fuel depletion. Implementing these dynamic
behaviors using recursive data design would introduce
unnecessary complexity and potential performance bottle-
necks [151], [152]. Iterative algorithms are better suited for
handling the mutable state and frequent updates required
in the simulation

The rationale for choosing the Actor model stems from
the significant synchronization required in this program,
which would be unsuitable for linear computation models.
Recursive data patterns would struggle to handle this level
of synchronization, and even if we attempted to use such
a pattern, structuring the graph to integrate it effectively
would be highly impractical [153], [154]. Integrating this
pattern within this framework is likely more impractical
than using the pipeline design pattern.

8.3 Approaches to Evaluate Parallel Code

To evaluate the proposed parallel program implementing
the actor model for this road simulation using MPI, we
would need to employ a combination of performance met-
rics, analytical methods, and specialized tools to thoroughly
assess its efficiency and scalability [155]. Key metrics such
as running time, speedup, parallel efficiency, and conver-
gence properties provide valuable insights into how well
the parallelization performs relative to the original serial
code [156]; good experimental practice also has to take place
to ensure the reliability and consistency of findings [157].
Additionally, understanding the optimal mapping of actors
to processors, knowing how to segment the actors efficiently
that allows clean code and scalability, and determining
the optimal processor count is also crucial for maximizing
performance [158].

8.3.0.1 Measuring Running Time and Speedup:
Firstly, measure the running time 7}, of the parallel program
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on p processors. By comparing this to the running time of
the serial program T3, compute the speedup S, defined as

[159]:

This metric would help indicate how much faster the paral-
lel program runs than the serial version. Ideally, we should
aim for linear speedup, where S, = p, but in practice,
the speedup is often sub-linear due to overheads such as
communication and synchronization and other factors that
are not accounted for [160].

8.3.0.2 Calculating Parallel Efficiency: We should
also calculate the parallel efficiency F, using [161]:
E, = S _
T A
Parallel efficiency measures how effectively the processors
are utilized in the parallel program. A high efficiency close
to 1 signifies that the processors are being used optimally,
whereas a low efficiency indicates overheads diminishing
the benefits of parallelization [162]. Analyzing E,, assesses
the program’s scalability and identifies diminishing returns
as the processor count increases; this would help identify
the optimal processor count and also unveil insights into
our program that may not be obvious.

8.3.0.3 Utilizing Performance Analysis Tools: We
also need to thoroughly evaluate these metrics and utilize
various performance analysis tools designed explicitly for
parallel programs [163]. Numerous profiling tools can pro-
vide insights about the bottlenecks in our parallel program;
there is an MPI profiling tool called Scalasca [164], which
can pinpoint hotspots and areas for optimization within
our code. We can use this to understand tradeoffs in our
implementation details, such as using persistent commu-
nication rather than point-to-point communication. These
tools can profile MPI applications to identify bottlenecks in
communication and computation [165]. They collect data on
MPI function calls, message sizes, and frequencies, helping
understand the overhead introduced by inter-process com-
munication.

8.3.04 Optimizing Actor-to-Processor Mapping;:
We can also examine the optimum mapping of actors to
processors [166]. In the actor model implemented with MPI,
actors represent entities such as vehicles, roads, or junctions,
and their mapping to processors affects communication
patterns and load balancing [167]. Experiment with different
mapping strategies, such as:

e Geographic Partitioning: Assigning actors based on
their spatial locality in the simulation to minimize
communication between processors [168].

o Load Balancing Algorithms: Using dynamic load
balancing techniques to distribute actors evenly
across processors to prevent some processors from
becoming bottlenecks [169].

8.3.0.5 Assessing Convergence Properties: The
most essential thing in every computational process is the



result. If the result is not accurate, then the whole program
is not useful, which is why we would need convergence
properties to ensure that parallelization does not adversely
affect the accuracy or stability of the simulation results [170].
Verify that the parallel program produces results consistent
with the serial version by comparing key outputs [171].

8.3.0.6 Conducting Scalability Testing: Another cru-
cial component is to conduct scalability testing. Perform
both strong scaling and weak scaling tests [172]. This
would help evaluate the parallel program’s performance un-
der different scaling scenarios and provide us with insights
that other evaluations couldn’t.

All these tools should be used strategically, as they
complement each other and don’t work in isolation; they
could be used interchangeably. It should be known when
to use a tool to evaluate and conclude the result of another
tool, as these would provide the most insights and intuitions
about the program.

9 CONCLUSION

Parallel computing is a central aspect of modern computer
science applied to anything from mundane smartphone to
supercomputer usage. Following its path of evolution back
to the very origins—theoretical foundations of PRAM and
BSP to modern multi-core and heterogeneous systems—it
is possible to appreciate both the principles that are the
foundations of parallelism and the practical considerations
needed to parallelize successfully [80].

Central to this is the understanding that parallel per-
formance is a function of several interrelated factors. The
intrinsic character of a problem, notably the ease with
which a problem can be decomposed into parts that can
then be distributed among tasks, usually determines the
degree to which parallelization can provide meaningful
speedups [160]. Additionally, hardware elements like CPUs,
caches, memory, and special-purpose accelerators add to
the complications since load balancing, cache coherence,
and memory hierarchy directly impact the efficiency of
execution [49]. No less significant are the software models of
programming—processes, threads, message passing, actor-
oriented designs, and a broad range of parallel patterns
(such as geometric decomposition, pipeline, and recur-
sive data)—each contributing models of coordinating work
among distributed concurrent environments [35].

Beyond foundational principles, this effort also strongly
emphasizes quality tooling and a supportive environment.
Profiling and debugging software like Intel VTune, Allinea
DDT, or NVIDIA Nsight, combined with well-engineered
programming frameworks (MPI, OpenMP and CUDA), sup-
ply the capabilities to develop, refine, and support scalable
parallel applications [173]. Concurrent with this are shared
knowledge bases and information that supply the means
to learn constantly and improve together. As the domain
pushes ahead—confronting challenges of exascale comput-
ing, parallelism in the cloud, and AI workloads—these
parallelization skills will increasingly become paramount to
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master. Understanding problem decompositions, hardware-
software interactions, and contemporary debugging and
optimizing techniques is not merely advantageous to the
domain of HPC but also echoes all areas of the computing
domain. Computer science can tackle the concurrent future
with strong, scalable parallel programs by incorporating
historical knowledge, theoretic models, and practical appli-
cations into their designs [174].
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10 APPENDIX
10.1

The Cirrus HPC system is located at the Uni- versity of
Edinburgh. The system comprises 283 compute nodes, each
with 2.1 GHz, 18-core Intel Xeon E5-2695 processors and
256 GB of memory. The Cirrus supercomputer features 36
GPU compute nodes. Each node is equipped with two
Intel Xeon Gold 6148 (Cascade Lake) processors running
at 2.5 GHz, with each processor containing 20 cores. These
cores support 2 hardware threads (Hyperthreads) per core,
which are enabled by default. Addi- tionally, each node
contains four NVIDIA Tesla V100-SXM2-16GB (Volta) GPU
accelerators, which are interconnected and connected to the
host processors via PCle. In total, the GPU compute nodes
provide 144 GPU accelerators (4 GPUs x 36 nodes) and 1,440
CPU cores (40 cores x 36 nodes) across the system. The cache
hierarchies for the compute nodes are detailed in Table 3

Details of the Cirrus supercomputer

TABLE 1: Cache Hierarchies for CPU and GPU Nodes
(a) CPU Node Cache Hierarchy

Cache Level Size

L1 Cache 32 KiB per core

L2 Cache 256 KiB per core

L3 Cache 45 MiB shared
(b) GPU Node Cache Hierarchy
Cache Level Size

L1 Cache 32 KiB per core
L2 Cache 1 MiB per core
L3 Cache 27.5 MiB shared

10.2 Pseudocode for MPI-Based Cellular Automaton
Simulation

Algorithm 1 Main Simulation Procedure

1: procedure MAIN

2 args < PARSEARGUMENTS

3 if args.mode = "serial"V MPI_Size() = 1 then
4 RUNSIMULATIONSERIAL(args)

5: else

6 RUNSIMULATIONPARALLEL(args)

7 end if

8: end procedure

Procedure: RunSimulationSerial(args)
1: Set parameters: L, p, seed, maxstep, print freq <— args
2: Initialize random generator with seed
3: grid < ZeroMatrix(L +2,L +2) 1 Create grid with
ghost boundaries
4: for each cell (4,7) in grid[1 : L,1: L] do
5 Set grid[i, j] < 1 with probability p, else 0
6: end for
7. initial_live < Sum(grid[l : L,1: L))
8: Print simulation parameters
9: Start timer
10: for step = 1 to maxstep do



11:

12:
13:

14:

15:
16:
17:
18:

23

UPDATEGHOSTBOUNDARIES(grid) > Enforce  34: if rank = 0 then

periodic conditions 35: Write global_result to output file
APPLYBOUNDARYCONDITIONS(grid, L) 36: end if
neighbors <~ COMPUTENEIGHBORS(gr4d) >Sum of  37: Finalize MPI

4-adjacent cells
live < UPDATECELLS(grid, neighbors) > Cells

become alive if neighbor count is in {2,4,5) 10.3 Details of the Road Simulation Model

if step mod printfreq = 0 then
Print current step and live cell count e The road map is represented as a graph:
end if

— Junctions are nodes in the graph, and roads are
edges between these nodes.
- Individual roads (graph edges) are always uni-

if live < 0.75 X initial_live V live > 1.33 x
initial_live then

19: Print termination message and break i

20: end if directional (one way), so always connect one

1. end for junction (graph node) to another and not the

22: Stop timer and compute average time per iteration othe.zr way foun}i' )

23: Write grid[1 : L,1: L] to output file — Whilst there will be routes connecting a spe-
’ cific junction to many others in the graph,

Procedure: RunSimulationParallel(args) there is no guarantee that there is a route

1:
2:

o ® N

11:

12:
13:

14:
15:
16:
17:
18:
19:
20:
21:
22:

23:
24:
25:
26:

27:
28:
29:
30:
31:
32:

33:

between every pair of junctions.

Set parameters: L, p, seed, mazstep, print freq < args
P P p,printfreq g — The graph is provided to the model via an

Initialize MPI and create Cartesian topology: obtain ; ) B S OEEL v

comm, rank, size, dims, coords, cart_comm input file, which is read during initialisation.

EC/)TanUte local dimensions: (local_rows, local_cols) « Roads are all different lengths, expressed in metres:
ims

if rank = 0 then - Roads also have a maximum vehicle speed
global_grid < CreateRandomMatrix(L, L) with and current speed. The current speed depends

probability p upon how congested the road is (i.e., the num-

end if ber of vehicles currently on the road).

global_grid < Broadcast(global_grid, root = 0) — Theroad’s length and maximum vehicle speed

local_grid <+ ExtractSubgrid(global_grid, coords, local_rows, local_col fre also specified in the initialisation file.

grid < CreateExtendedGrid(local_grid, local_rows,local_cols)

" Vehicles travel from one junction to another:

local_initial_live < Sum(local_grid)
initial_live <+ ReduceSum(local_initial_live) and —  Vehicles are periodically added to the simula-
Broadcast to all processes tion, and at this point, their source (starting
if rank = 0 then' junction) and destination junction are set.
Print simulation parameters and number of pro- — While the source and destination junctions are
cesses random, only those with valid routes between
end if them will be selected.
Barrier synchronization on cart_comm
Start timer (MPL_Wtime) e Junctions may have multiple roads connecting them
for step = 1 to maxstep do to other junctions:
EXCHANGEHALOS(grid, cart_comm, local_rows, local_cols) A . -
: . - junction may or may not have traffic lights.
ADJUSTBOUNDARIES(grid, coords, dims, local_rows, local_cols, L) A ]
. . =/ If traffic lights are present:
neighbors <~ COMPUTENEIGHBORS(grid)
local_live < UPDATECELLS(grid, neighbors) * Only one road connected to the junction
total_live < ReduceSum(local_live) over all pro- can be used at any time.
cesses *  Vehicles requiring other roads must wait
if rank = 0 A (step mod print freq = 0) then until the traffic lights enable their desired
Print current step and total_live road.
end if * Traffic lights change each simulated
if total_live < 0.75 X initial_live V total_live > minute, working in a round-robin manner
1.33 x initial_live then to enable one road after another.
if rank = 0 then o
Print termination message and break — If no traffic lights are present, all roads con-
end if nected to the junction can be used at all times.
end if — Traffic light information is included in the
end for initialisation file.
Sto;;{timéz)r and compute average time per iteration (on « Vehicles travel on roads and through junctions:
rank =
global_result < GatherSubgrids(grid|1 : — There are six types of vehicles: car, bus, mini-

local_rows, 1 : local_cols)) bus, coach, motorbike, and bike.



*  Each has different capabilities, including
maximum speed and maximum passenger
capacity.

These parameters are defined in the code.

*  When a vehicle is created, the number of
passengers is randomly generated up to
the maximum capacity.

While on a road, vehicles continually update
their location based on their current speed.

* The speed at which a vehicle travels de-
pends on the road’s speed when the ve-
hicle left the junction and the vehicle’s
maximum speed (whichever is smaller).

*  Vehicles do not continuously check the
road’s current speed after entering it.

When a vehicle arrives at a junction:

* If the junction is not its destination, the
vehicle re-plans its route.

*  Route planning considers the road lengths
and, for most roads, their maximum speed.

* For roads connected to the current junc-
tion, the vehicle uses the current speed
instead of the maximum speed.

* If the junction has traffic lights, the vehicle
waits until the selected road is enabled.

* If the junction is the vehicle’s destination,
it is removed from the simulation.

o Vehicle crashes can occur at junctions without traffic

lights:

All crashes involve a single vehicle (i.e., no
multi-vehicle collisions).

Crashes only occur at junctions, never on
roads.

The likelihood of a crash increases with the
number of vehicles at the junction.

A crashed vehicle is removed from the simu-
lation.

e Vehicles have a finite amount of fuel, which can run

out:

When a vehicle is created, its fuel amount
(expressed in seconds of running time) is ran-
domly generated.

Fuel consumption is continuous, whether the
vehicle is moving or waiting at a junction.
Vehicle speed does not affect fuel consump-
tion.

When fuel runs out, the vehicle is removed
from the simulation.

e The simulation periodically prints progress sum-
maries to stdio, including:

Current simulation time (in minutes).

Total number of vehicles added to the simula-
tion.

Total number of passengers delivered to their
destination.

24

Total number of passengers stranded (due to
crashes or fuel depletion).

Number of vehicle crashes.

Number of vehicles that have run out of fuel.

o The simulation terminates after a predetermined
number of simulation minutes:

A final summary is printed to stdio, includ-
ing:

Current simulation time (in minutes).

*  Total number of vehicles added to the sim-
ulation.

*  Total number of passengers delivered to
their destination.
Total number of passengers stranded.
Number of vehicle crashes.

*  Number of vehicles that ran out of fuel.

A file is written with more detailed statistics:

*  For each junction, the number of crashes
and the number of vehicles that have
passed through.

*  For each road, the number of vehicles that
traveled on it and the highest concurrent
vehicle count (i.e., congestion levels).
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