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Abstract—This survey examines the evolution, current
state, and future directions of high-performance computing
(HPC) architectures. We trace the historical progression from
early supercomputers like the CDC 6600 through vector
processing systems, massively parallel processors, to today’s
heterogeneous architectures. The paper analyzes the top
ten supercomputing systems as of 2024, highlighting critical
architectural components and performance characteristics
that have enabled the achievement of exascale computing.
We identify several dominant trends: the correlation be-
tween core count scaling and performance ranking, the
market dominance of AMD, NVIDIA, and Intel components,
the critical role of high-bandwidth memory integration,
and the prevalence of heterogeneous CPU-GPU computing
paradigms. All top systems except Fugaku employ CPU-
GPU architectures, while Fugaku demonstrates exceptional
performance using a unique ARM-based design with Scalable
Vector Extensions. Looking forward, we discuss the techno-
logical challenges and potential pathways toward zettascale
computing, including advancements in processor architec-
ture, memory technologies, interconnect fabrics, and novel
computing paradigms such as neuromorphic, quantum, and
optical computing. This comprehensive analysis provides
insights into the architectural innovations driving extreme-
scale computing and the obstacles that must be overcome to
achieve the next generation of high-performance systems.

I. INTRODUCTION

High-performance architectures are becoming more rel-
evant due to the rapid and continuous emergence of
machine learning and scientific computing applications.
Household computers are equipped with enough com-
putation to run the required daily applications but fall
significantly short for applications that require enormous
floating-point operations [36]. They are still Turing ma-
chines and can compute the necessary FLOPs. Still, it
is highly impractical as these computations can take
days, months, or even years to complete on household
systems, given that the device is constantly running and
the program is not halted. This is why we need high-
performance architectures, as these systems allow us to
compute programs that require intense FLOPs in a short
or reasonable time, which is sensible and practical instead
of using limited systems [11]. This is the rationale behind
supercomputers and the justification for the effort and
research used in designing and optimizing these systems
for scientific computing.

For instance, advanced climate and fluid dynamics
simulations that model complex phenomena like turbu-
lence or high-resolution atmospheric conditions require

quintillions of FLOPs to produce accurate results [24]. A
simulation that might take years on a desktop computer
can be completed in hours or days on a supercomputer.
In this paper, we will discuss the historical evolution of
high performance architectures, the components which are
imbued in these architectures followed by the trends and
the future of high performance architectures to provide a
holistic view of the supercomputing landscape [54].

II. HISTORICAL EVOLUTION OF HIGH-PERFORMANCE
ARCHITECTURES

High-performance architectures have taken many forms
over the years. We have notable benchmarks to gauge the
performance of these architectures; the most popular is the
LINPACK benchmark, which measures computing power
by assessing how quickly a system can solve a dense
system of linear equations—a prevalent task in scientific
computing and engineering [37].

There have been several criticisms about the LINPACK
benchmark. Numerous statements have claimed that it is
flawed, and most researchers and institutions that create
and architect high-performance computing architectures
are gaming the system, making computers for the sole
purpose of excelling at the LINPACK benchmark [46].
That is why using this benchmark in isolation doesn’t
reflect the true performance of a supercomputer. There
are other benchmarks which are used to compliment the
LINPACK including:

o STREAM: a synthetic benchmark program that mea-
sures sustainable memory bandwidth (in GB/s) and
the corresponding computation rate for simple vector
kernels [89]

o High-Performance Conjugate Gradient (HPCG):
which examines data access patterns of real-world
applications such as sparse matrix calculations, thus
testing/stressing memory subsystems [34]

o Several other benchmarks, including HPCC [85],
MLPerf HPC [88], Graph500 [96], HPCAI, and many
more

There are many benchmarks, and more are still being
created, making it impractical to test all these bench-
marks on supercomputers. However, a few critically ac-
claimed benchmarks can be used to test the flexibility and
adaptability of high-performance architectures. In the next



section, we will discuss the evolving trajectory of high-
performance architectures, the trends, why these trends
have emerged, and how to improve them significantly.

High-performance computing has evolved since the
1960s. The main muses during that era were a series of su-
percomputers designed by Seymour Cray at Control Data
Corporation (CDC) which started with the CDC 6600, it
was released in 1964, and widely regarded as the first
supercomputer, excelling due to its approach to innovation
and parallelism [130]. It marked a new generation of
computing. Although earlier machines like IBM NORC in
the 1950s and the UNIVAC LARC and IBM 7030 Stretch
in the early 1960s were considered supercomputers due to
their comparable performance, the CDC 6600 stood out
due to its differentiable approach [17].

In the earlier instances of supercomputing, the initial
focus in achieving high performance was on innovative
designs and parallelism. The CDC 6600 gained speed
by farming out work to peripheral computing elements,
freeing the central processing unit (CPU) to focus on
processing actual data [130]. These early approaches of
delegating tasks foreshadowed the development of spe-
cialized processors in modern heterogeneous architectures.
Seymour Cray, a pivotal figure in early supercomputing,
also designed the CDC 1604 around 1960, the fastest
supercomputer at its release [86]. The University of
Manchester’s work on the MUSE project, aiming for
speeds approaching one million instructions per second,
also contributed significantly to this era. The development
of languages such as FORTRAN enabled scientists and
engineers to effectively utilize these powerful machines
for complex calculations [16].

In the 1970s and 1980s, the vector processing era
began, which allowed the same instruction to be used on
multiple data points. This significantly boosted parallelism
and improved the computational speed of scientific and
engineering tasks [116]. The CDC Star-100 was among
the first machines to employ a vector processor using
deep pipelines to process data efficiently. Still, these
deep pipelines required substantial data to achieve opti-
mal performance. Cray computers such as Cray-1, which
appeared later, used a small number of fast processors
working in harmony, uniformly connected to a large shared
memory [25].

The cylindrical shape of these early Cray computers
was one of the main innovations designed to centralize
access and minimize travel distances, which is crucial
for maintaining high speeds [25]. Despite these advan-
tages, vector processors had limitations, including strict
data alignment requirements and reduced efficiency when
dealing with scalar instructions, so there was a need to
explore alternative parallel processing approaches. In the
1990s and 2000s, there was a significant shift towards mas-
sively parallel processing systems that utilized thousands
of processors connected to distributed memory architec-
tures. This transition allowed scalability in computational
power [50]. Examples of MPP systems include Thinking
Machines CM-5, which employed a fat tree network of

SPARC processors, the Intel ASCI Red, and the IBM
Blue Gene [33]. While MPP systems offered significant
performance gains, they also introduced challenges in
inter-processor communication and the complexity of par-
allel programming. During this period, cluster computing
emerged as a more cost-effective alternative to traditional
supercomputers. The availability of commodity proces-
sors, open-source software such as Linux, and technolo-
gies like Beowulf clusters made HPC more available to
various organizations [124]. Parallel programming models
such as MPI (Message Passing Interface) and OpenMP
were developed to facilitate the creation of software that
could exploit these parallel architectures [44].

In the 21st century, we have seen a rise in heteroge-
neous computing, which combines traditional CPUs with
architectures such as GPUs. This approach leverages the
strengths of different processor types for various computa-
tional tasks, leading to improved performance and energy
efficiency [106]. The latest major milestone in HPC is the
advent of exascale computing, which represents a new era
of computational capability [73].

III. CURRENT ECOSYSTEM OF HIGH-PERFORMANCE
ARCHITECTURES

Now we have numerous high-performance architectures,
which are equipped with varying components and excel
in a wide range of tasks; we have the Frontier system,
which is the first exascale architecture, and there is also
the Supercomputer Fukagu which ranks on the top 10 in
the top 500 without using a heterogeneous architecture and
its principally CPU focused [132]. Many architects con-
centrate on building high-performance architectures using
GPGPUs due to the improved price of these systems [12].
However, conventional processor designs amplified by the
SPARC-based systems and the ARM-powered Fugaku
continue to demonstrate efficiency in top-tier computing,
underscoring an ongoing discussion regarding the uni-
versal applicability of GPGPUs [53]. Below we present
an overview of the Top 10 supercomputers based on the
LINPACK benchmark.

A. El Capitan

The architecture with the number one spot on the
Top500 as of November 2024 is the El Capitan super-
computer, achieving a remarkable 1.742 exaflops (Rmax
HPL performance) at the Lawrence Livermore National
Laboratory in the USA [76]. El Capitan is powered by
AMD 4th Generation EPYC processors, featuring 24 cores
per CPU and a clock speed of 1.8 GHz. The system
incorporates a total of 1,051,392 CPU cores. It also utilizes
AMD Instinct MI300A accelerators; the system contains
43,808 MI300A Accelerated Processing Units (APUs),
resulting in a staggering 9,988,224 GPU cores [4].

El Capitan is an architecture characterized by its ag-
gressive scale, aiming to maximize FLOPs primarily by
incorporating many GPUs and also CPUs. While the HPE
Cray Slingshot-11 network is a well-established intercon-
nect for high-speed data transfer between nodes [7], and
the AMD EPYC processor is a standard high-performance
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CPU, the system’s memory hierarchy and core integration
are distinct. A key factor contributing to its number one
spot on the Top500 is the massive parallelism offered by its
9,988,224 GPU cores, tightly integrated with CPU cores
via the MI300A APU architecture. Each MI300A unit
has 128GB of HBM3 memory, providing a bandwidth of
5.3 TB/s per unit [4]. Integrating CPU, GPU, and high-
bandwidth memory on a single package is a significant ar-
chitectural feature to enhance computational capacity and
data access efficiency. This massive parallelism enables
El Capitan to deliver over two exaFLOPs (precisely 2.746
EFlop/s Rpeak) of theoretical peak performance, making it
well-suited for large-scale simulations and Al workloads.
Developed for the Lawrence Livermore National Labora-
tory, the system demonstrates how scaling computationally
dense APUs to extreme levels can push the boundaries
of high-performance computing, establishing new bench-
marks for future systems to surpass [38].

B. Frontier

Frontier is the second-place architecture housed at the
Oak Ridge National Laboratory; Frontier demonstrates a
formidable 1.353 exaflops [132]. Frontier is equipped with
AMD Optimized 3rd Generator EPYC processors, the
same family of processors that the El Capitan possesses;
its processors feature 64 cores per CPU and operate at
a clock speed of 2.0GHz. The system comprises 9,604
CPUs, totaling 6,214,656 CPU cores. It also utilizes AMD
Instinct MI250X accelerators, with each of the nodes
incorporating four MI250X GPUs, resulting in 8,451,520
GPU cores [104]; each compute node features 512 GB
of DDR4 memory for the CPU and 128 GB of HBM2e
memory per M1250X GPU, which provides enough input
for the data-hungry GPUs. The AMD Infinity Fabric
provides coherent memory access across the CPU and
GPUs [1].

The AMD Infinity Fabric is one of the key innovations
that allows the exceptional performance of the Frontier
supercomputer. It provides coherent access between the
AMD Optimized 3rd Generator EPYC processors and the
AMD Instinct MI250X accelerators [1]. This implies that
both the CPU and the GPU cores can directly access the
exact memory locations in the high-bandwidth memory
(HBM3) without the need for explicit data transfers or
copies between separate CPU and GPU memory sys-
tems; this has significant implications for performance

by eliminating the need to move data between separate
memory spaces, the latency associated with data access
is reduced. The CPU and GPU can access the necessary
data much faster, leading to quicker execution times for
the high-performance applications it runs [70]. This also
simplifies the programming experience by providing a
coherent memory abstraction for programmers rather than
treating the CPU and GPU memory as two separate units,
reducing the complexity of writing efficient parallel code.
Eliminating the need for explicit data copies between
CPU and GPU memory systems reduces overall power
consumption. Data movement is energy-intensive and co-
herent access minimizes this overhead [51].

The Frontier can also be called an aggressive architec-
ture but not as aggressive as the El Capitan; it maximizes
performance by integrating high-performance CPUs and
GPUs. It uses the same brand of CPUs and GPUs as the El
Capitan,; still, the El Capitan is a more recent architecture,
so it uses a more modern CPU and GPU than the Frontier
supercomputer and has more CPU and GPU cores, which
is the rationale for why it excels in performance over the
Frontier [4], [104].

C. Aurora

In the number three spot, we have the supercomputer
Aurora. Previous architectures that have been discussed
used CPUs and GPUs from AMD, but the Aurora super-
computer uses CPUs and GPUs that Intel produces [56].
It is powered by the Intel Xeon Max 9470 processors,
featuring 52 cores per CPU operating at a clock speed of
2.4GHz. The system incorporated 21,248 CPUs, resulting
in 1,104,896 CPU cores. The supercomputer also utilizes
Intel Data Center GPU Max series accelerators, with each
of the 10,674 compute blades housing six CPU Units,
resulting in 8,159,232 GPU cores [8].

Each compute node features 64 GB of high bandwidth
memory (HBM) on the two Intel Xeon CPU Max Series
processors and 512 GB of DDRS memory per processor.
The Intel Data Center GPU Max Series also incorporates
128 GB of HBM per GPU and a RAMBO cache [59].
The system employs a unified memory architecture across
the CPUs and GPUs and uses the standard HPE Cray
Slingshot-11 interconnect, employing a dragonfly topol-
ogy [7]; each compute node has eight Slingshot-11 fabric
endpoints.

The Aurora supercomputer is the third supercomputer
that has crossed the exascale barrier. The architectural
distinction of its processors is the on-package integration
of 64GB of High Bandwidth Memory 2e (HBMZ2e) per
CPU [59]. This direct integration allows a much higher
memory bandwidth and lower latency than traditional
DDRS memory, also present in the system. The Xeon Max
series supports various memory modes, including HBM-
Only, Flat, and Cache modes, allowing for flexible con-
figuration based on application requirements. The HBM2e
memory in these processors achieves a peak transfer rate
of 3200 MT/s, offering over 1GB of HBM capacity per
core in the 56-core variant [70]. This integration directly
addresses memory bottlenecks common in HPC by placing



high-speed memory close to the processing cores, thus
significantly accelerating data access. In addition to the
HBM, each processor is equipped with 512GB of DDR5
memory, operating at transfer rates of up to 4800 MT/s,
balancing memory speed and overall capacity. Combining
these memory technologies in the Intel Xeon Max series
can allow substantial efficiency gains in applications lim-
ited by data access [56].

D. Eagle

Eagle is the next on the list; it is the highest-ranked
cloud-based computer, achieves a LINPACK score of
561.2 petaflops, and is located within Microsoft Azure
Cloud [132]. It is equipped with Intel Xeon Platinum
8480C processors, featuring 48 cores per CPU and a
clock speed of 2.0 GHz. The system incorporates 3,600
such CPUs, totaling 172,800 CPU Cores. it also utilises
NVIDIA Hopper H100 GPUs, with each of the 1,800
Azure ND H100 v5 nodes housing eight H100 GPUs, re-
sulting in 1,900,800 GPU cores [91]. Each NVIDIA H100
GPU is equipped with 80 GB of HBM2e memory, and
the Intel Xeon Platinum 8480C processors support DDRS
memory, which provides increased bandwidth and effi-
ciency over previous DDR generations [100]. The nodes
are then interconnected using NVIDIA InfiniBand NDR
technology, facilitating high-speed, low-latency communi-
cation crucial for distributed computing tasks [101].

Unlike other high-performance computers, which are
operated by top-tier institutions and are limited to a broad
range of research projects, the Eagle supercomputer is
integrated into the cloud via Microsoft Azure [91]. This
gives most developers and organizations worldwide access
to its computational power for various tasks, ranging from
artificial intelligence to scientific simulations. It is also
important to note that this architecture has supported
the training and deployment of popular language models,
including models in the GPT series by OpenAl [105].

This architecture features significantly fewer total CPU
and GPU cores than its predecessor. While Aurora contains
9,264,128 total cores, Eagle has only 2,073,600 cores. This
reduction in cores results in a substantial performance de-
crease due to limited parallelism: Aurora achieves a theo-
retical peak performance (RPeak) of 1,980.01 PetaFLOPs,
while Eagle reaches only 846.84 PetaFLOPs. This dif-
ference highlights the direct relationship between total
core count and performance in today’s high-performance
computing ecosystem [36].

E. HPC6

The HPC6 is powered by the AMD Optimized 3rd
Generation EPYC processor, the same as Frontier. This
processor features 64 cores per CPU and operates at a
2.0 GHz clock speed [48]. The system contains 3,330 of
these CPUs, totaling 213,120 CPU cores. It also uses the
same AMD Instinct MI250X GPUs as Frontier, with each
of the 3,330 nodes containing four GPUs, resulting in a
total of 2,930,400 GPU cores. The AMD EPYC CPUs
and Instinct MI250X GPUs have dedicated cache memory
for rapid access to frequently used data and instructions.
The MI250X GPUs feature High Bandwidth Memory

(HBM), providing the substantial bandwidth necessary for
efficiently processing large datasets and complex com-
putations [2]. Each node includes significant DDR4 or
DDR5 RAM as the primary workspace for active data
processing. The nodes are interconnected via the HPE
Slingshot network [7].

While HPC6 utilizes the same components as the Fron-
tier supercomputer, the main difference lies in scale. This
difference in the number of processors and accelerators
results in a significant performance gap: Frontier has a
total core count of 9,066,176, while HPC6 has 3,143,520
cores (including both GPUs and CPUs) [132].

F. Fugaku

The Fukagu supercomputer is architecture below the
HPC6 in the Top 500 rankings; the Fukagu is the most in-
teresting supercomputer in the Top 10 as it is the only CPU
architecture and does not rely on scaling CPU and GPU
nodes to achieve parallelism [114]. The Fukagu system
is powered by the Fujitsu A64FX processor, featuring 48
compute cores and operating at a clock speed of 2.2GHz.
The system incorporates 158,976 such as CPUs, totaling
7,630,848 CPU cores. The A64FX processor is based on
the ARMv8.2-A SVE instruction set architecture with a
512-bit vector implementation [71].

Each node is equipped with 32 GiB of high-bandwidth
memory (HBM2) with a bandwidth of 1024 GB/s [71].
The processor features a two-level cache hierarchy with 64
KiB of L1 data cache per core and 8 MiB of L2 cache per
Core Memory Group (CMG), with four CMGs per node.
Fukagu also utilises the proprietary Tofu Interconnect D, a
6D mesh/torus network with 10 ports per node, each with
two lanes operating at 28 Gbps, supporting Remote Direct
Memory Access (RDMA) [5].
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Fig. 2: Block Diagram of Tofu D Interconnect [5]

Fukagu is a unique high-performance architecture. Al-
though it doesn’t feature a GPU, it excels in various bench-
marks outside the LINPACK, including graph analytics
and machine learning [42]. Most of its performance power
is gained from its distinctive processor, most specifically
the ARMV8.2-A SVE instruction set architecture [123].

The Supercomputer Fukagu ranks first on the Graph500
benchmark, which is specifically designed to evaluate
the performance of supercomputers on data-intensive ap-
plications that include graph analytics [42]. Unlike the
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LINPACK benchmarks, which primarily focus on float-
ing point-intensive tasks, Graph 500 assesses a system’s
ability to handle workloads with irregular memory and
network access patterns. The primary kernel measured
by Graph500 is Breadth-First Search (BFS), with perfor-
mance quantified in terms of Traversed Edges Per Second
(TEPS) [96].

Fukagu’s excellence in the Graph500 can be attributed
to several key architectural features of its Fujitsu A64FX
processor. The Scalable Vector Extension (SVE) with a
512-bit vector length allows for highly efficient parallel
processing of the large and often distributed datasets
encountered in graph traversal [123]. SVE provides flex-
ibility in handling variable vector lengths and simplifies
the control of masked operations, which is particularly
beneficial for the irregular nature of graph workloads. It
is also important to state that Fujitsu’s custom hardware
extensions to the A64FX, including hardware barriers,
sector cache, and prefetch, likely contribute to improved
performance on memory-bound tasks like graph traver-
sal [71].

Another critical factor in Fukagu’s Graph500 success
is the high memory bandwidth. Integrating four stacks of
HBM2 within each A64FX processor provides a band-
width of 1024 GB/s per node (163 PB/s system-wide)[71].
This high bandwidth is essential for efficiently accessing
and processing the graph data, which is scattered across
the system’s memory and assessed unpredictably during
BFS. The combination of wide vector units and high
memory bandwidth allows Fugaku to rapidly process the
edges of the graph, leading to its Top rankings on the
Graph500 benchmark[42].

Fukagu excels on the Graph500 and HPC-AI rankings
despite not featuring a GPU within its architecture [52].
This benchmark evaluates the performance of supercom-
puters on workloads that represent the convergence of
traditional HPC and artificial intelligence (AI). It mea-
sures the system’s capability to execute mixed-precision
algorithms commonly used in machine learning and deep
learning [62].

Fugaku is the most distinctive architecture on the Top
500 list. Unlike typical high-performance computing sys-

tems of its era, which focused on simply scaling up CPU
and GPU core counts, Fugaku was meticulously designed
with an emphasis on architectural innovation [114].

G. Alps

Alps is the supercomputer that falls below the Fugaku
on the Top500, funded by the Swiss Confederation through
the ETH Domain, with its central location in Lugano.
It is part of the Swiss National Supercomputing Centre
(CSCS), which provides computing services for selected
scientific customers [127]. It is powered by NVIDIA
Grace processors featuring Arm Neoverse V2 cores per
CPU and operates at a clock speed of 3.1GHz. The
system incorporates 10,400 such CPUs, totaling 748,800
CPU cores. It utilizes NVIDIA GH200 Superchips, with
each of the 10,400 nodes housing one GH200 Superchip,
resulting in 1,372,800 GPU cores. The GH200 integrates
the NVIDIA Grace CPU and the Hopper GPU on a single
chip [102]. Each NVIDIA GH200 Superchip incorporates
high-bandwidth memory (HBM3) integrated within the
package. It also utilizes the HPE Cray Slingshot-11 inter-
connect for high-speed communication between nodes [7].

it was also designed with a cloud-native architecture;
Alps enables the creation of versatile software-defined
clusters (clusters). These clusters can be adapted to meet
the specific needs of various user communities while
ensuring confidentiality [127]. This flexibility allows in-
stitutions like MeteoSwiss to run high-resolution weather
prediction models and supports diverse scientific research
domains.

H. LUMI

LUMI is equipped with AMD Optimized 3rd Genera-
tion EPYC processors, featuring 64 cores per CPU and op-
erating at a clock speed of 2GHz. The system incorporates
2,916 such GPUs in its GPU partition, totaling 186,624
CPU cores [84]. The supercomputer also utilizes AMD
Instinct MI250X accelerators, with each of 2,978 GPU
nodes housing four MI250X GPUs, resulting in 2,566,980
GPU cores [2].

Each GPU node features 512 GB of RAM attached to
the CPU and 128 GB of HBM2e memory per MI250X
GPU. The CPU cores gave 32 Kib of L1 data and
instruction cache, 512 KiB of L2 cache per core, and
32 MB of L3 cache shared across eight cores. It utilizes
the HPE Cray Slingshot-11 interconnect using a dragonfly
topology [7]. Each GPU node has four network intercon-
nect cards, providing 800 Gbit/s injection bandwidth.

1. Leonardo

Leonardo is the ninth supercomputer on the Top500 list.
It is powered by Intel Xeon Platinum 8358 processors,
featuring 32 cores per CPU and operating at a clock
speed of 2.6 GHz in its booster module [28]. The data-
centric module utilizes Intel Sapphire Rapids CPUs with
56 cores, each operating at 2.0GHz. The booster module
incorporates 3,456 CPUs, totaling 110,592 CPU cores.

The supercomputer utilizes NVIDIA Ampere A100
SXM4 GPUs with 64 GB of HBM2 memory, with



four GPUs per node in the booster module, resulting in
1,714,176 GPU cores [99]. The memory hierarchy booster
has 512 GB of DDR4 memory for the CPU and 64 GB
of HBM2 per GPU. The data-centric module nodes have
512GB of DDRS5 memory. The interconnect employs a
quad-rail NVIDIA HDR100 Infiniband interconnect with a
Dragonfly+ topology, providing a bandwidth of 200 Gbit/s
between nodes [101].

J. Tuolumme

The Tuoloume supercomputer is the tenth supercom-
puter on the Top 500 list. It is powered by AMD 4th
Gen EPYC processors, featuring 24 cores per CPU and
operating at a clock speed of 1.8 GHz [132]. The system
incorporates 4,608 such CPUs, totaling 110,592 CPU
cores. It also utilizes the AMD Instinct M1300A acceler-
ators, with each of the 4,608 nodes housing 228 MI300A
GPUgs, resulting in 1,050,624 GPU cores [4]. Its memory
hierarchy consists of multiple tiers optimized for high-
performance computing workloads. Each node is equipped
with 512 GB of DDR5 RAM, providing fast access to
frequently used data, while the MI300A GPUs feature
integrated HBM3 memory with 128 GB per accelerator.

The system implements a high-speed interconnect fabric
using AMD Infinity Fabric technology, allowing commu-
nication between nodes at up to 400 GB/s [1]. Tuoloume
employs a parallel file system with 20 PB capacity and an
aggregate throughput of 2 TB/s for persistent storage.

IV. TRENDS AND PATTERNS IN LEADING
SUPERCOMPUTER ARCHITECTURES

After examining the Top 10 leading supercomput-
ers based on the LINPACK benchmark, several patterns
and trends that characterize the current state of high-
performance computing become apparent [132]. These
trends will be discussed in this section.

A. Scaling Core Count

A clear statistical relationship exists between a high-
performance architecture’s total core count and its position
on the Top500 list [36]. The top three supercomputers
demonstrate this correlation: El Capitan ranks first with
11,039,616 total cores (CPU and GPU combined), Fron-
tier follows in second place with 9,066,176 cores, and
Aurora sits third with 9,264,128 cores. The remaining
architectures in the top ten, with the notable exception
of Fugaku, all fall below 3,100,000 total cores. This
pattern suggests that maximizing core count can lead
to exceptional performance [49]. However, this strategy
requires careful consideration, as high-performance CPUs
and GPUs represent significant investments, especially the
advanced models necessary to remain competitive in the
Top500 rankings [110].

These processors and accelerators also create significant
power consumption overhead. The GPUs and accelerators
in these systems often exhibit even more incredible power
consumption [26]. The AMD Instinct MI series, including
the MI250X in Frontier and HPC6 and the MI300A in
El Capitan and Tuolumne, can have TDPs potentially
exceeding 500 Watts [2], [4]. NVIDIA’s Hopper H100

GPUs, employed in Eagle and Alps, can draw up to 700
Watts [100], while the NVIDIA A100 GPUs in Leonardo
have a TDP of around 400 Watts [99]. Notably, Aurora’s
Intel Data Center GPU Max subsystem can have a TDP
as high as 2400 Watts [57]. The cumulative effect of
such power-hungry components results in immense overall
system power consumption. Snippet provides data on the
total power consumption in kilowatts for most of the
top 10 systems, revealing demands ranging from 3,387
kW for Tuolumne to 38,698 kW for Aurora [43]. El
Capitan consumes approximately 29,581 kW and Frontier
around 24,607 kW. These figures, often in the tens of
megawatts, emphasize the substantial energy requirements
of these high-core-count architectures. These components
require substantial cooling systems, which are expensive
and difficult to scale [119]. Therefore, power management
and thermal considerations must be key factors when
designing architectures with maximized core counts [74].

The interconnect becomes more critical when the goal
is maximizing core count [64]. One challenge that would
potentially arise when interconnecting a vast number of
cores is managing the communication latency; with a
more significant number of cores, the physical distances
that data must travel between communicating units would
increase, potentially leading to higher latency [23]. Tra-
ditional network protocols like TCP/IP, which involve
multiple context switches in the kernel during packet
transmission and reception, introduce significant latency
that can be detrimental in high-performance computing
environments [82]. In order to mitigate this, low-latency
interconnects and technologies like Remote Direct Mem-
ory Access (RDMA) have become crucial and are uti-
lized by the Supercomputer Fugaku [5]. RDMA allows
for direct data transfer between the memory of different
computers without involving the operating system kernel,
reducing communication delays and allowing for latencies
approaching one microsecond [63].

B. Prevalence of AMD, NVIDIA and Intel

All architectures within the Top 10, except Fugaku,
incorporate components manufactured by AMD, NVIDIA,
or Intel, highlighting these companies’ dominance in high-
performance computing [132]. Designing and manufactur-
ing high-performance CPUs and GPUs at the scale these
organizations achieve is exceptionally challenging due to
the substantial fixed and variable costs involved [45].
The technical expertise, manufacturing capabilities, and
research infrastructure required create significant barriers
to entry for potential competitors in this specialized mar-
ket [21].

This dominance also implies that the ecosystem of tools,
libraries, and developer support for these processors is
well-established and widely supported, further solidifying
its market position and making it more challenging for
potential new entrants to position themselves within the
ecosystem [93]. The tight integration between hardware
and software allows these firms to leverage specialized op-
timizations that boost the performance of their hardware,
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which is critical for performance-sensitive HPC applica-
tions where marginal gains prove to be consequential [41].
As a result, AMD, NVIDIA, and Intel will likely remain
at the forefront of HPC.

Below is the GPU market share of AMD, NVIDIA and
Intel
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C. Integration of High Bandwidth Memory (HBM)

High-bandwidth memory (HBM) has become highly
prevalent in high-performance computing architectures,
often equipped with each GPU and potentially the proces-
sor [78]. The core reason is that modern high-performance
processors (especially GPUs) can process data much faster
than traditional memory systems (like DDR SDRAM) can
supply it. This creates a “memory wall” or bottleneck,
where the processor sits idle, waiting for data, limiting
overall performance [139].

Instead of connecting memory chips via relatively nar-
row buses (like 64-bit per channel for DDR) on a mother-
board, HBM stacks multiple DRAM dies vertically [68].
These stacks are connected to the processor/GPU using
an extensive interface (e.g., 1024-bit or wider) through an
interposer intermediary layer. This extensive bus simul-
taneously transfers vast amounts of data, even at lower
clock speeds than high-end DDR [70]. While the total
power might be significant due to the sheer performance,
HBM is generally more power-efficient for the bandwidth
it delivers than achieving bandwidth similar to DDR [60].
HBM has become fundamental in high-performance com-
puting environments due to its ability to feed data-hungry
processors and GPUs rather than leaving behind the extra
performance that can be gained. In contrast, these com-
puting systems are left idle [108].

Memory technology HBM has evolved over time.
HBM?2 was introduced in 2016, with JEDEC updating
the standard in December 2018. This update has been

informally called both HBM2 and HBM2E. After another
update in early 2020, the name "HBM2E” wasn’t officially
adopted, though some people and companies still use
terms like HBM2E or even Micron’s term "HBMnext. The
current HBM2 specification allows for 3.2 GBps per pin,
stacks with up to 24GB capacity (using twelve 2GB dies
per stack), and maximum bandwidth of 410 GBps through
a 1,024-bit memory interface divided into 8 channels per
stack.

The original HBM2 specification was more limited: 2
GBps per pin, 8GB maximum stack capacity (eight 1GB
dies per stack), and 256 GBps bandwidth. Before reaching
today’s standard, it was upgraded to 2.4 Gbps per pin,
24GB capacity (twelve 2GB dies per stack), and 307
Gbps bandwidth. Regarding the upcoming HBM3 standard
being developed by JEDEC, Ars Technica reports it may
support up to 64GB capacities and bandwidths up to 512
GBps. Techlnsights analyst Jeongdong Choe indicated in
2019 that HBM3 would support 4 Gbps transfer rates.
HBM3 is expected to include more dies per stack and
more than double the density per die while maintaining
similar power requirements. Cadence noted in 2020 that
HBM3 will use a 512-bit bus with higher clock speeds,
potentially reducing costs by eliminating the need for a
silicon interposer while achieving higher bandwidth.

Below is a depiction of the High Bandwidth Memory
stack that is included into these high-performance archi-
tectures.
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Fig. 6: High Bandwidth Stack Diagram

D. Heterogeneous Computing Dominance

All of the architectures in the Top 10 except the Super-
computer Fukagu use both CPUs and GPUs, showing the
increasing trend of heterogeneous architectures in high-
performance computing systems [142]. Competing in the
top 500 is challenging without using a heterogeneous
computing architecture [132].

The main driver of this paradigm is the massive boost
in performance that accelerators, especially GPUs, can
provide [106]. GPUs contain thousands of simpler cores
designed to excel at these parallel tasks (like matrix
multiplication, simulations, and rendering). They can often
perform these specific computations orders of magnitude
faster than a CPU alone [98]. CPUs handle the serial parts
of the code, control flow, and task orchestration, while
accelerators chew through the heavy parallel computa-
tions [22].



The performance gains from the amount of computa-
tional power unlocked by accelerators allow researchers
and engineers to tackle grand problems that were previ-
ously intractable due to time or resource constraints [134].
These include running larger simulations, training more
complex Al models, or analyzing bigger datasets [20].

V. FUTURE OF HIGH PERFORMANCE COMPUTING
ARCHITECTURES

Exascale computing has now become a reality, with top
three architectures in the TopS00 reaching and exceeding
the mark [131]. The future of computing is zettascale
computing which would be a significant milestone to
reach as a thousandfold increase on the exascale mark
[112]. This transition would require advancements in
processor technology, memory systems, and interconnect
fabrics, including the exploration of novel computing
paradigms and interdisciplinary collaborations to over-
come the formidable challenges of power consumption
and heat dissipation [35]. While some current architectural
approaches and technologies will remain foundational,
others will fade as new solutions emerge to meet the
extreme demands of zettascale [18].

There has been an historical trend of performance gains
driven by Moore’s law, which was a prediction of the
doubling of transistors on an integrated circuit approx-
imately every two years [95], we also have the Dennard
scaling, which suggested that power density would remain
constant despite increasing transistor density [31], these
predictions and scaling laws were prevalent for decades
but are currently facing significant limitations in today’s
computing ecosystem [87].

As transistors approach atomic scales and fabrication
costs continue to rise, relying solely on these historical
drivers for achieving zettascale performance is no longer
feasible [137]; achieving this goal would require a shift to-
wards innovative architectural approaches and specialized
hardware [117].

A. Advances in Processor and Accelerator Architectures

CPU architectures for High Performance Computing
primarily focus on maximizing core counts and memory
bandwidth to handle the complex simulations and data-
intensive workloads characteristic of extreme-scale com-
puting [55]. The CPUs which are being used in leading
HPC systems have large core counts, The AMD EPYC
processor has 64 cores [3] while the Intel Xeon Max series
also includes High Bandwidth Memory (HBM) [58], these
are examples of components which show this rising trend.
This emphasis on parallelism at the core level is crucial
for exploiting the vast computational resources required
for zettascale [72].

The role of GPUs and accelerators in HPC is also
rapidly evolving. GPUs, with their massively parallel
architectures have become critical for accelerating a wide
range of HPC workloads, particularly those in artificial
intelligence and data analytics [103]. The integration of
specialized units like tensor cores within GPUs further
enhances their performance for Al related tasks [29],

and more specialization would be done in accelerator
architectures which would lead to more differentiation in
high performance architectures, allowing architects and
manufacturers to equip their supercomputers with the
option they believe is most suitable for the performance
and efficiency gains they are trying to achieve [13].

The increasing prevalence of heterogeneous computing,
which involves combining CPUs, GPUs, and these spe-
cialized accelerators, is expected to intensify on the path
to petascale [129]. This will allow for optimal resource
utilization based on the unique characteristics of different
workloads.

Another trend in processor technology is the increasing
importance of chiplet technology for future processor de-
sign and scalability [118]. Chiplets offers a more modular
approach to building complex processors by combining
multiple smaller dies, each potentially manufactured us-
ing different process nodes or materials [65]. This new
approach would help overcome the limitations associate
with manufacturing large monolithic dies, such as lower
yields and increased costs [136]. Chiplet technology also
allows for integrating heterogeneous functionalities within
a single package, supporting the trend toward specialised
acceleration in high performance architectures [9]. The
complexity required for zettascale is expected to increase
and chiplet technology is poised to become a crucial
enabler for achieving the necessary performance and scal-
ability in a cost effective manner [90].

B. Advancements in Memory Technologies

In today’s architectures, we currently have the memory
wall which is the disparity between the processor speeds
and memory access times [140], it is a critical challenge
in HPC, and advancements in memory technologies are
necessary in order to reach zettascale. High Bandwidth
Memory (HBM) is already playing a vital role in address-
ing this challenge in exascale systems [77]. By stacking
memory dies vertically and utilizing wide interfaces, HBM
provides a significantly higher bandwidth compared to
traditional DDR memory which is crucial for feeding the
powerful processors in exascale machines [61]. In order to
reach zettascale computing, the bandwidth and capacity
of HBM will need to continue on an upward trajectory
to keep pace with the anticipated increase in computing
power [143].

C. Advancements of Interconnect Technologies

The sheer size of petascale systems, with possibly
millions of linked parts, will require interconnects able
to handle unmatched data transfer rates with little delay
[122]. This might mean creating more complex routing
techniques to reduce network diameter and hop count and
using new physical layers like optical interconnects [133].

Supporting the great parallelism of zettascale computing
will also depend on the development of network topolo-
gies. Standard in present exascale systems like Frontier
and Perlmutter, the Dragonfly topology balances cost
and performance [69]. However, future systems could



need even more sophisticated topologies, such as higher-
dimensional tori or bespoke designs suited to particular
system architectures and workload traits [27], as the num-
ber of nodes on the road to petascale rises dramatically.

Particularly, silicon photonics among optical intercon-
nects show great potential for reaching the bandwidth and
energy efficiency needed at zettascale [126]. Especially
over longer distances, optical signaling has the possibility
for significantly higher bandwidth and lower energy use
than electrical interconnects [92]. Optical interconnects
could be crucial for preserving high performance and
controlling power consumption in the interconnect fabric
as zettascale systems may have bigger physical footprints
with more node counts [19].

Moreover, developments in network interface cards
(NICs) with growing capacity will be important for en-
hancing interconnect performance [80]. Emerging as key
components for offloading network processing duties from
the main CPUs are smart NICs and data processing units
(DPUs) [79], which handle protocols and security func-
tions, among others. Application workloads benefit from
this offloading as its computing resources can significantly
improve overall system efficiency and reduce communica-
tion latency, which will be crucial for the extreme demands
of zettascale computing [141].

D. Beyond Conventional Approaches

New computing paradigms are being investigated for
their possible contributions to reaching zettascale and
beyond as the constraints of conventional von Neumann
architectures grow more clear at extreme scales [128].
Inspired by the structure and operation of the human brain,
neuromorphic computing provides an energy-efficient so-
lution to particular kinds of workloads, including artificial
intelligence and pattern recognition [115]. Although not
a straight road to zettascale in the near term, its natural
parallelism and event-driven processing could make it a
useful part of future heterogeneous zettascale systems, es-
pecially for Al-heavy applications where energy economy
is top priority [30].

By solving now intractable issues, quantum computing
offers another paradigm to transform HPC [109]. Though
still in its early phases and quantum computers could
serve as strong co-processors in future HPC environments,
addressing particular computational bottlenecks outside
the reach of classical systems given difficulties in qubit
stability and error correction [10]. Although improbable
to be the only technology pushing the first move to zettas-
cale, quantum computing’s possible influence on scientific
discovery in the long run is great [94].

A more radical departure from conventional architec-
tures is optical computing, which processes information
using photons rather than electrons [120]. Optical comput-
ing, which uses photons instead of electrons for computa-
tion, represents a more radical departure from conventional
architectures. Though still mostly in the research and
development stage, optical computing has the theoretical
potential to attain ultra-high performance and energy effi-

ciency because to the natural speed and bandwidth of light
[81]. Eventually, overcoming the technological obstacles
in constructing practical and scalable optical computers
could open the way for performance levels beyond even
zettascale, representing a long-term vision for the future
of extreme-scale computing [107].

The most likely scenario for the future of computing at
these extreme scales involves a hybrid approach, where the
strengths of different computing paradigms are leveraged
for different types of workloads [135]. Classical electronic
computing, with its mature ecosystem and versatility, will
likely remain the foundation, augmented by specialized
accelerators like GPUs and potentially complemented by
neuromorphic and quantum co-processors for specific
tasks [47]. This heterogeneous approach will allow for
optimal resource utilization and the most efficient path
towards tackling the diverse computational challenges that
zettascale systems will be expected to address [117].

E. Interdisciplinary Approaches
Computing

in High-Performance

It will take a strong convergence of expertise from
different scientific and engineering disciplines to achieve
the ambitious goal of zettascale computing. In order to
create new materials with improved qualities for transistors
and interconnects that use less energy, materials science
will be essential [66]. Advances in materials research will
be crucial to overcoming the physical constraints of current
silicon-based technology and facilitating the development
of faster, smaller, and more power-efficient components
[144].

The basic knowledge required to investigate new com-
puting paradigms that might be able to overcome the
constraints of traditional electronic computing is provided
by physics [138]. Two excellent examples of how basic
physics concepts are being used to develop completely
new computational methods are the advancement of quan-
tum computing and the current study of optical computing
[15].

Computer science continues to play a crucial role in the
development of HPC allowing for the creation of effective
architectures, programming models, and algorithms that
can fully utilise the enormous potential of zettascale
systems [32], Effective software is essential for converting
that potential into actual computing power, even with
ground-breaking hardware developments [6].

Ultimately, overcoming the intricate and interrelated
obstacles to reaching zettascale and beyond will require
interdisciplinary cooperation between materials scientists,
physicists, computer scientists, and other specialists [97].
Pushing the limits of high-performance computing re-
quires a coordinated and cooperative approach because ad-
vancements in one field frequently depend on innovations
in other fields [83].

F. Predictions and Roadmaps Towards Zettascale

Although the given snippets do not specifically outline a
timeline for the arrival of petascale computing, the contin-
uous development of exascale systems and the proactive



investigation of upcoming technologies by top research
institutes and industry professionals clearly point to a went
on trajectory towards even greater performance levels [14].
Future zettascale initiatives will be greatly aided by the
current emphasis on developing and efficiently employing
exascale capabilities [113].

Leaders in the industry, such as processor makers AMD
and Intel and HPC suppliers HPE, are always coming
up with new ideas for processor, GPU, and interconnect
technologies [75]. It’s very likely that their products’ next
generations will aim for performance levels that are much
higher than the exascale threshold that exists now. The
research and development cycles of these businesses offer
insightful information about the expected technological
breakthroughs that will pave the way for zettascale [39].

But there will be obstacles and unknowns along the
way to Petascale. Unexpected technological obstacles will
surely arise in the pursuit of such previously unheard-
of computational power, necessitating a sustained and
substantial financial commitment [121]. The conventional
performance scaling roadmap is made even more uncertain
by the slowing of Moore’s Law [67]. Reaching new
performance milestones frequently requires overcoming
unforeseen challenges, as the history of HPC development
shows, and the enormous scale of petascale computing is
likely to present even more challenges [111].

The growing convergence of HPC and Al workloads is
a key trend influencing the direction of HPC architectures
and will surely impact the journey to petascale [125]. The
increasing need for Al applications pushes the limits of
HPC’s computational capacity. This convergence is result-
ing in the development of HPC architectures that prioritize
features beneficial for both traditional simulations and
AI/ML workloads, such as specialized Al accelerators and
software optimizations, which will be crucial for achieving
zettascale performance in this evolving landscape [40].

VI. CONCLUSION

High-performance architectures have shown constant
improvement in their performance since the first recog-
nized supercomputer, the CDC 6600, was designed by
Seymour Cray due to numerous innovations and tech-
niques to exploit more parallelism from these architec-
tures. We have seen the rise of vector processors, and
now we are witnessing the dominance of heterogenous
architectures, which allowed supercomputers to reach the
exascale barrier; there are still numerous inventions and
innovations that are going on in research for both academia
and industry, focusing on chipset technologies and how to
break the memory wall currently in high-performance ar-
chitectures. To reach zettascale computing, we would need
interdisciplinary expertise from various fields, including
material science, physics, and engineering. Crossing the
zettascale barrier would be a much more difficult problem
than the exascale barrier, and simply scaling the core count
and adding more accelerators would lead to significant
inefficiencies if not complemented with innovations in
interconnect technologies and energy efficiency. Crossing
the Zettascale barrier would allow solving problems that

were infeasible in the Exascale era and could lead to
advancements in scientific disciplines. It will be a long
and challenging journey as we march towards zettascale
computing. Still, the scientific community has proven to
be up for the challenge due to the numerous advances
that have been made to allow us to even be on the verge
of this grand task, and although it might be daunting,
the potential breakthroughs in science, medicine, and
engineering that zettascale computing promises make this
ambitious endeavor not just worthwhile, but essential for
humanity’s continued technological evolution [112].
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